Một vật chuyển động thẳng không đều xác định bởi phương trình s(t) = 3 - 4t + t² trong đó s tỉnh bằng mét, 1 là thời gian tỉnh bằng giây. Tính gia tốc của chuyển động tại thời điểm t = 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 5:
a: \(A=\dfrac{1}{1\times2}+\dfrac{1}{2\times3}+...+\dfrac{1}{99\times100}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=1-\dfrac{1}{100}=\dfrac{99}{100}\)
b: \(B=\dfrac{1}{1\times3}+\dfrac{2}{3\times7}+\dfrac{1}{7\times9}+\dfrac{3}{9\times15}+\dfrac{6}{15\times27}\)
\(=\dfrac{1}{2}\left(\dfrac{2}{1\times3}+\dfrac{4}{3\times7}+\dfrac{2}{7\times9}+\dfrac{6}{9\times15}+\dfrac{12}{15\times27}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{15}+\dfrac{1}{15}-\dfrac{1}{27}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{27}\right)=\dfrac{1}{2}\times\dfrac{26}{27}=\dfrac{13}{27}\)
c: \(C=\dfrac{1}{1\times3}+\dfrac{1}{3\times5}+...+\dfrac{1}{2011\times2013}\)
\(=\dfrac{1}{2}\times\left(\dfrac{2}{1\times3}+\dfrac{2}{3\times5}+...+\dfrac{2}{2011\times2013}\right)\)
\(=\dfrac{1}{2}\times\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2011}-\dfrac{1}{2013}\right)\)
\(=\dfrac{1}{2}\times\left(1-\dfrac{1}{2013}\right)=\dfrac{1}{2}\times\dfrac{2012}{2013}=\dfrac{1006}{2013}\)
Bài 3:
a: Khi m=2006; n=2007; p=2008 thì
\(S=2006\times2+2007\times2+2008\times2=2\times\left(2006+2007+2008\right)=12042\)
b: \(S=m\times2+n\times2+p\times2=2\times\left(m+n+p\right)=2\times2009=4018\)
\(M=\dfrac{1}{1\cdot5}+\dfrac{1}{5\cdot9}+...+\dfrac{1}{n\left(n+4\right)}\)
\(=\dfrac{1}{4}\left(\dfrac{4}{1\cdot5}+\dfrac{4}{5\cdot9}+...+\dfrac{4}{n\left(n+4\right)}\right)\)
\(=\dfrac{1}{4}\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+...+\dfrac{1}{n}-\dfrac{1}{n+4}\right)\)
\(=\dfrac{1}{4}\left(1-\dfrac{1}{n+4}\right)=\dfrac{1}{4}\cdot\dfrac{n+4-1}{n+4}=\dfrac{n+3}{4\left(n+4\right)}\)
\(\dfrac{2}{3}\) + \(x+\dfrac{1}{4}\)\(x\) = - \(\dfrac{22}{27}\)
\(x+\dfrac{1}{4}x\) = - \(\dfrac{22}{27}\) - \(\dfrac{2}{3}\)
\(\dfrac{5}{4}x\) = - \(\dfrac{40}{27}\)
\(x=-\dfrac{40}{27}:\dfrac{5}{4}\)
\(x=-\dfrac{32}{27}\)
Vậy \(x=-\dfrac{32}{27}\)
a: Đặt a/b=c/d=k
=>\(a=bk;c=dk\)
\(\left(\dfrac{a-b}{c-d}\right)^2=\left(\dfrac{bk-b}{dk-d}\right)^2=\left(\dfrac{b\left(k-1\right)}{d\left(k-1\right)}\right)^2=\left(\dfrac{b}{d}\right)^2\)
\(\dfrac{ab}{cd}=\dfrac{bk\cdot b}{dk\cdot k}=\dfrac{b^2\cdot k}{d^2\cdot k}=\dfrac{b^2}{d^2}\)
Do đó: \(\left(\dfrac{a-b}{c-d}\right)^2=\dfrac{ab}{cd}\)
b: \(\left(\dfrac{a+b}{c+d}\right)^3=\left(\dfrac{bk+b}{dk+d}\right)^3=\left(\dfrac{b\left(k+1\right)}{d\left(k+1\right)}\right)^3=\left(\dfrac{b}{d}\right)^3\)
\(\dfrac{a^3-b^3}{c^3-d^3}=\dfrac{b^3k^3-b^3}{d^3k^3-d^3}=\dfrac{b^3\left(k^3-1\right)}{d^3\left(k^3-1\right)}=\dfrac{b^3}{d^3}\)
Do đó: \(\left(\dfrac{a+b}{c+d}\right)^3=\dfrac{a^3-b^3}{c^3-d^3}\)
Trên tia ssoois của MA lấy D sao cho DM=AM
Mà BM=CM (gt)
=> ABCD là hình bình hành (Tứ giác có 2 đường chéo cắt nhau tại trung điểm mỗi đường là hbh)
Ta có \(\widehat{A}=90^o\)
=> ABCD là hình chữ nhật => AD=BC (trong HCN hai đường chéo bằng nhau)
Ta có
\(AM=\dfrac{AD}{2}\) mà \(AD=BC\left(cmt\right)\Rightarrow AM=\dfrac{BC}{2}\)
Gọi tam giác vuông đề bài cho là ΔABC vuông tại A, đường trung tuyến AM
Trên tia đối của tia MA, lấy D sao cho MA=MD
Xét ΔMAB và ΔMDC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)
MB=MC
Do đó: ΔMAB=ΔMDC
=>\(\widehat{MAB}=\widehat{MDC}\)
=>AB//DC
Ta có: AB//DC
AB\(\perp\)AC
Do đó: CD\(\perp\)CA
Xét ΔBAC vuông tại A và ΔDCA vuông tại C có
BA=DC
AC chung
Do đó: ΔBAC=ΔDCA
=>BC=DA
mà DA=2AM
nên BC=2AM
=>\(AM=\dfrac{1}{2}BC\)(ĐPCM)
Đặt A = 2 + 2² + 2³ + ... + 2²⁰
2A = 2² + 2³ + 2⁴ + ... + 2²¹
A = 2A - A
= (2² + 2³ + 2⁴ + ... + 2²¹) - (2 + 2² + 2² + ... + 2²⁰)
= 2²¹ - 2
= 2097150
A = 2 + 22 + 23 + ... + 220
2.A =2.(2 + 22 + 23 + ... + 220)
2A = 22 + 23 + 24 + ... + 221
2A - A = 22 + 23 + 24 + ... + 221 - (2 + 22 + 23 + ... + 220)
A = 22 + 23 + 24 + ... + 221 - 2 - 22 - ... - 220
A = (22 - 22) + (23 - 23) + ... + (221 - 2)
A = 0 + 0 + ... + 0 + 221 - 2
A = 221 - 2
Giải:
Vì DE // BC
\(\dfrac{AD}{AB}\) = \(\dfrac{AE}{AC}\) (hệ quả Thalet)
⇒ \(\dfrac{2}{AB}\) = \(\dfrac{4}{10}\)
AB = 2 : \(\dfrac{4}{10}\)
AB = 5
Vậy AB = 5 cm
AB = AD + BD
BD = AB - AD
BD = 5 - 2 = 3
Vậy BD = 3cm
Kết luận: BD = 3cm
Ta có:
EC = AC - AE = 10 - 4 = 6
∆ABC có:
DE // BC (gt)
⇒ AD/BD = AE/EC (định lý Thales)
⇒ 2/BD = 4/6
⇒ BD = 2 . 6 : 4 = 3
Lời giải:
Gọi giá ban đầu của 1 hộp sữa là $a$ và giá 1 gói đường là $b$ (đồng)
Theo bài ra ta có:
\(\left\{\begin{matrix}\\ 9a+3b=147000\\ 9(a-1500)+3b.0,9=147000-21000\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}\\ 9a+3b=147000\\ 9a+2,7b=139500\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}\\ a=8000\\ b=25000\end{matrix}\right.\)
Diện tích mảnh vườn là:
\(1200000:20000=60\left(m^2\right)\)
Gọi chiều rộng mảnh vườn là x (m) với x>0
Chiều dài mảnh vườn là: \(x+4\) (m)
Diện tích mảnh vườn là: \(x\left(x+4\right)\) \(\left(m^2\right)\)
Do diện tích mảnh vườn là 60 \(m^2\) nên ta có pt:
\(x\left(x+4\right)=60\)
\(\Leftrightarrow x^2+4x-60=0\Rightarrow\left[{}\begin{matrix}x=6\\x=-10\left(loại\right)\end{matrix}\right.\)
Vậy mảnh vườn rộng 6m
\(s\left(t\right)=t^2-4t+3\)
=>\(v\left(t\right)=s'\left(t\right)=2t-4\)
=>\(a\left(t\right)=v'\left(t\right)=2\cdot1=2\)
=>a(4)=2