ĐKXĐ \(\sqrt{x+2018}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\frac{\sqrt{x}}{\sqrt{x}-2}=1+\frac{2}{\sqrt{x}-2}\)
Để M nguyên thì \(\sqrt{x}-2\)phải là ước của 2 hay
\(\sqrt{x}-2=-2;-1;1;2\)
\(\Rightarrow x=0;1;9;16\)
\(\frac{\sqrt{x}}{\sqrt{x}-2}=\frac{\sqrt{x}-2+2}{\sqrt{x}-2}=1+\frac{2}{\sqrt{x}-2}\)ĐK : \(x\ne4\)
\(\Rightarrow\sqrt{x}-2\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
\(\sqrt{x}-2\) | 1 | -1 | 2 | -2 |
x | 1 | 1 | 16 | 0 |
\(\sqrt{x^2-6x+9}=\sqrt{4x^2+4x+2}\)
\(\sqrt{\left(x-3\right)^2}=\sqrt{4x^2+4x+2}\)
\(\left(x-3\right)^2=4x^2+4x+2\)
\(\left(x-3\right)^2-\left(2x+1\right)^2-1=0\)
\(\left(x-3-2x-1\right)\left(x-3+2x+1\right)-1=0\)
\(\left(-x-4\right)\left(3x-2\right)-1=0\)
\(-3x^2-12x+2x+8-1=0\)
\(-3x^2-10x+7=0\)
\(\sqrt{\Delta}=\sqrt{\left(-10\right)^2-4\left(-3\right)7}=2\sqrt{46}\)
\(\orbr{\begin{cases}x_1=\frac{10+2\sqrt{46}}{-6}=\frac{-5-\sqrt{46}}{3}\left(TM\right)\\x_2=\frac{10-2\sqrt{46}}{-6}=\frac{\sqrt{46}-5}{3}\left(TM\right)\end{cases}}\)
\(\sqrt{x^2-6x+9}=\sqrt{4x^2+4x+2}\)
\(\Leftrightarrow x^2-6x+9=4x^2+4x+2\Leftrightarrow3x^2+10x-7=0\)
\(\Delta'=25-\left(-7\right).3=46>0\)
pt có 2 nghiệm pb
\(x_1=\frac{-5-\sqrt{46}}{3};x_2=\frac{-5+\sqrt{46}}{3}\)
a, \(\sqrt{9\left(x+2\right)^2}=6\Leftrightarrow3\sqrt{\left(x+2\right)^2}=6\Leftrightarrow\left|x+2\right|=2\)
TH1 : \(x+2=2\Leftrightarrow x=0\)
TH2 : \(x+2=-2\Leftrightarrow x=-4\)
b, \(3x+\sqrt{4x^2-4x+1}=4\Leftrightarrow\sqrt{\left(2x-1\right)^2}=4-3x\Leftrightarrow\left|2x-1\right|=4-3x\)
ĐK : \(4-3x\ge0\Leftrightarrow-3x\ge-4\Leftrightarrow x\le\frac{4}{3}\)
TH1 : \(2x-1=4-3x\Leftrightarrow5x=5\Leftrightarrow x=1\)(tm)
TH2 : \(2x-1=3x-4\Leftrightarrow x=3\)(ktm)
đkxđ : x+ 2018 >= 0
<=> x >= -2018
vậy_
\(ĐKXĐ:\sqrt{x+2018}\ne0\)
\(\Rightarrow x+2018\ne0\)
\(\Rightarrow x\ne-2018\)
#H