giúp mình giải chi tiết với, cảm ơn cac bạn nhiều
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/
Xét tg vuông AKD và tg vuông MKB có chung \(\widehat{MKB}\)
=> tg AKD đồng dạng với tg MKB \(\Rightarrow\frac{KA}{KM}=\frac{KD}{KB}\Rightarrow KA.KB=KD.KM\)
b/
Ta có
\(MH\perp AC;AB\perp AC\)=> MH//AB
MB=MC
=> MH là đường trung bình của tg ABC \(\Rightarrow MH=\frac{AB}{2}\)
Xét tg vuông MCD có
\(MH^2=HC.HD\)(Trong tg vuông bình phương đường cao từ đỉnh góc vuông bằng tích hai hình chiếu của 2 cạnh bên trên cạnh huyền)
\(\Rightarrow\left(\frac{AB}{2}\right)^2=HC.HD\Rightarrow AB^2=4.HC.HD\)
\(1-\sin^2\alpha=\sin^2\alpha+\cos^2\alpha-\sin^2\alpha=\cos^2\alpha\)
\(\left(1-\cos\alpha\right)\left(1+\cos\alpha\right)=1-\cos^2\alpha=\sin^2\alpha+\cos^2\alpha-\cos^2a=\sin^2a\)
\(1+\sin^2a+\cos^2\alpha=1+1=2\)
\(\sin\alpha-\sin\alpha\cdot\cos^2\alpha=\sin\alpha\left(1-\cos^2a\right)=\sin\alpha\left(\sin^2\alpha+\cos^2a-\cos^2a\right)=\sin^3\alpha\)
\(\sin^4\alpha+\cos^4\alpha+2\sin^2\alpha\cdot\cos^2\alpha=\left(\sin^2\alpha+\cos^2\alpha\right)^2=1^2=1\)
1/ \(1-\sin^2\alpha=\cos^2\alpha\)
2/ \(\left(1-\cos\alpha\right)\left(1+\cos\alpha\right)=1-\cos^2\alpha=\sin^2\alpha\)
3/ \(1+\sin^2\alpha+\cos^2\alpha=1+1=2\)
4/ \(\sin\alpha\left(1-\cos^2\alpha\right)=\sin\alpha.\sin^2\alpha=\sin^3\alpha\)
5/ \(=\left(\sin^2\alpha+\cos^2\alpha\right)^2=1\)
Chứng minh \(\left(a+b+8\right).\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{8}\right)\ge9\) biết a>0, b>0
\(\left(a+b+8\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{8}\right)=1+\frac{a}{b}+\frac{a}{8}+\frac{b}{a}+1+\frac{b}{8}+\frac{8}{a}+\frac{8}{b}+1\)
\(=3+\frac{a}{b}+\frac{b}{a}+\frac{a}{8}+\frac{8}{a}+\frac{b}{8}+\frac{8}{b}\)
\(\ge3+2\sqrt{\frac{a}{b}.\frac{b}{a}}+2\sqrt{\frac{a}{8}.\frac{8}{a}}+2\sqrt{\frac{b}{8}.\frac{8}{b}}\)
\(=3+2+2+2=9\)
Dấu \(=\)khi \(a=b=8\).
\(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)=a.\frac{1}{a}+\frac{a}{b}+\frac{b}{a}+b.\frac{1}{b}\)
\(1+1+\frac{a}{b}+\frac{b}{a}\ge1+1+2\sqrt{\frac{a}{b}.\frac{b}{a}}\)( cô-si)
\(VT\ge1+1+2\sqrt{1}=4\)
dấu "=" xảy ra khi và chỉ khi \(\frac{a}{b}=\frac{b}{a}\)
\(< =>ĐPCM\)
bài này nhiều cách giải lắm:) Cauchy thì giống bạn Hoàng Như Quỳnh nhé
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(\frac{1}{a}+\frac{1}{b}\ge\frac{\left(1+1\right)^2}{a+b}=\frac{4}{a+b}\Rightarrow\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge\left(a+b\right)\cdot\frac{4}{a+b}=4\) ( a,b > 0 => a + b > 0 bđt giữ chiều )
=> đpcm . Dấu "=" xảy ra <=> a = b > 0
\(P=x+y+z+\frac{3}{4x}+\frac{9}{8y}+\frac{1}{z}\)
\(=\frac{3}{4}x+\frac{3}{4x}+\frac{1}{2}y+\frac{9}{8y}+\frac{1}{4}z+\frac{1}{z}+\frac{1}{4}x+\frac{1}{2}y+\frac{3}{4}z\)
\(\ge\frac{3}{2}\sqrt{x.\frac{1}{x}}+2\sqrt{\frac{1}{2}y.\frac{9}{8y}}+2\sqrt{\frac{1}{4}z.\frac{1}{z}}+\frac{1}{4}.10\)
\(=\frac{3}{2}+\frac{3}{2}+1+\frac{5}{2}=6,5\)
Dấu \(=\)khi \(\hept{\begin{cases}x=1\\y=1,5\\z=2\end{cases}}\).
bạn đánh dâu cho mik nha
góc nào vuông vậy bạn:))