Tính bằng cách thuận tiện nhất:
1h30 + 90 phút + 1,5 h x 8
giúp mik với. Mik cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cách học tốt tất cả các loại toán, áp dụng cho tất cả các lớp:
+ Năm vững kiến thức cơ bản.
+ Thực hành, luyện tập thường xuyên để nhuần nhuyễn các kiến thức đã học, để kiến thức đã học không bị lãng quên và mai một.
+ Đọc thật kĩ đề bài. Phân tích đề bài xem đề bài đã cho gì, yêu cầu tính cái gì. Muốn tính cái đó thì cần công thức nào. Kết hợp với đề bài (những yếu tố đã cho)để tìm ra phương pháp giải
+ Làm thật chuẩn thứ tự các bước, các quy tắc, các công thức toán học
+ Đọc các loại sách tham khảo, sách nâng cao để tu dưỡng rèn luyện thêm kiến thức và kĩ năng làm toán
+ Không ngững nỗ lực tìm tòi, sáng tạo, đổi mới cách học cách làm
Trên đây là toàn bộ kĩ năng dạy toán, học toán, làm toán của cô , cô chia sẻ lại các em vận dụng sao cho phù hợp với bản thân.
Chúc các em thành công! Và sẽ sớm trở thành giáo viên toán của Olm.
Câu 4:
a: O nằm trên tia đối của tia AB
=>A nằm giữa O và B
=>OB=OA+AB
=>OB=4+6=10(cm)
M là trung điểm của OA
=>\(OM=MA=\dfrac{OA}{2}\)
N là trung điểm của OB
=>\(ON=NB=\dfrac{OB}{2}\)
Vì OA<OB
nên OM<ON
=>M nằm giữa O và N
=>OM+MN=ON
=>\(MN=ON-OM=\dfrac{OB}{2}-\dfrac{OA}{2}=\dfrac{10}{2}-\dfrac{4}{2}=5-2=3\left(cm\right)\)
b: \(MN=ON-OM=\dfrac{OB}{2}-\dfrac{OA}{2}=\dfrac{1}{2}\left(OB-OA\right)\)
\(=\dfrac{1}{2}\cdot AB\) không đổi khi O di chuyển trên tia đối của tia AB
b; 1 + \(\dfrac{1}{3}\) + \(\dfrac{1}{6}\) + \(\dfrac{1}{10}\) + ... + \(\dfrac{2}{x\left(x+1\right)}\) = 1\(\dfrac{2023}{2025}\)
\(\dfrac{1}{2}\).(1 + \(\dfrac{1}{3}\) + \(\dfrac{1}{6}\) + \(\dfrac{1}{10}\) + ... + \(\dfrac{2}{x\left(x+1\right)}\)) = \(\dfrac{4048}{2025}\).\(\dfrac{1}{2}\)
\(\dfrac{1}{1.2}\) + \(\dfrac{1}{2.3}\) + \(\dfrac{1}{12}\) + \(\dfrac{1}{20}\) + ... + \(\dfrac{1}{x\left(x+1\right)}\) = \(\dfrac{2024}{2025}\)
\(\dfrac{1}{1.2}\) + \(\dfrac{1}{2.3}\) + \(\dfrac{1}{3.4}\) + \(\dfrac{1}{4.5}\) + ... + \(\dfrac{1}{x.\left(x+1\right)}\) = \(\dfrac{2024}{2025}\)
\(\dfrac{1}{1}\) - \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) + \(\dfrac{1}{4}\) - \(\dfrac{1}{5}\) + ... + \(\dfrac{1}{x}\) - \(\dfrac{1}{x+1}\) = \(\dfrac{2024}{2025}\)
\(\dfrac{1}{1}\) - \(\dfrac{1}{x+1}\) = \(\dfrac{2024}{2025}\)
\(\dfrac{1}{x+1}\) = 1 - \(\dfrac{2024}{2025}\)
\(\dfrac{1}{x+1}\) = \(\dfrac{1}{2025}\)
\(x+1\) = 2025
\(x\) = 2025 - 1
\(x=2024\)
Vậy \(x=2024\)
a: Xét tứ giác MAOH có \(\widehat{MAO}+\widehat{MHO}=90^0+90^0=180^0\)
nên MAOH là tứ giác nội tiếp
b: Xét ΔAMB vuông tại A và ΔAON vuông tại A có
\(\widehat{AMB}=\widehat{AON}\left(=90^0-\widehat{ANO}\right)\)
Do đó: ΔAMB~ΔAON
=>\(\dfrac{AM}{AO}=\dfrac{AB}{AN}\)
=>\(AM\cdot AN=AO\cdot AB\)
Giải:
Đổi 2 giờ 30 phút = 2,5 giờ
Quãng đường AB dài là:
30 x 2,5 = 75 (km/h)
Vận tốc của người đó lúc về là:
30 x \(\dfrac{6}{5}\) = 36 (km/h)
Với vận tốc bằng \(\dfrac{6}{5}\) vận tốc lúc đi thì thời gian người đó đi từ B về A là:
75 : 36 = \(\dfrac{25}{12}\) (giờ)
\(\dfrac{25}{12}\) giờ = 2 giờ 5 phút
Đáp số: Quãng đường AB dài 75 km
Thời gian người đó thi từ B về A là 2 giờ 5 phút
\(S=\dfrac{2}{3}\times\dfrac{4}{5}\times...\times\dfrac{4046}{4047}\)
\(S< \dfrac{3}{4}\times\dfrac{5}{6}\times...\times\dfrac{4047}{4048}\)
\(S^2< \dfrac{2}{3}\times\dfrac{4}{5}\times...\times\dfrac{4046}{4047}\times\left(\dfrac{3}{4}\times\dfrac{5}{6}\times...\times\dfrac{4047}{4048}\right)\)
\(S^2< \dfrac{2\times3\times4\times5\times...\times4046\times4047}{3\times4\times5\times6\times...\times4047\times4048}\)
\(S^2< \dfrac{2}{4048}\)
⇒ \(S^2< \dfrac{1}{2024}\)
1 giờ 30 phút + 90 phút + 1,5 giờ \(\times\) 8
= 1,5 giờ + 1,5 giờ + 1,5 giờ \(\times\) 8
= 1,5 giờ \(\times\) (1 + 1 + 8)
= 1,5 giờ \(\times\) 10
= 15 giờ
cho em hỏi 1 thay cho 1,5 h đg ko ạ?