giúp mình đi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tất cả mấy phương trình này cứ thấy căn là đặt căn = a; b là làm được hết
( mấy cái cơ bản thì tự viết nhé )
a) góc MAO và góc MBO= 90 độ
xét tứ giác MAOB có góc MAO+MBO=180 độ
=> MAOB nội tiếp
b) Xét (O) có EB là tiếp tuyến của (O)
\(\Rightarrow\widehat{EBD}=\widehat{EAB}\left(=\frac{1}{2}sđ\widebat{DB}\right)\)
Xét tam giác EDB và tam giác EBA có:
\(\hept{\begin{cases}\widehat{AEB}chung\\\widehat{EBD}=\widehat{EAB}\left(cmt\right)\end{cases}\Rightarrow\Delta EDB~\Delta EBA\left(g-g\right)}\)
\(\Rightarrow\frac{BE}{DE}=\frac{AE}{BE}\)
\(\Rightarrow BE^2=AE.DE\left(1\right)\)
Vì \(AC//MB\Rightarrow\widehat{ACM}=\widehat{DME}\left(SLT\right)\)
Ta có: \(\hept{\begin{cases}\widehat{ACM}=\widehat{ABD}\left(=\frac{1}{2}sđo\widebat{AD}\right)\\\widehat{ABD}=\widehat{MAD}\left(=\frac{1}{2}sđo\widebat{AD}\right)\end{cases}\Rightarrow\widehat{ACM}=\widehat{MAD}}\)
\(\Rightarrow\widehat{DME}=\widehat{MAD}\)
Xét tam giác EMD và tam giác EAM có:
\(\hept{\begin{cases}\widehat{DME}=\widehat{MAD}\\\widehat{AME}chung\end{cases}}\Rightarrow\Delta EMD~\Delta EAM\left(g-g\right)\)
\(\Rightarrow\frac{ME}{DE}=\frac{AE}{ME}\)
\(\Rightarrow ME^2=DE.AE\left(2\right)\)
Từ (1) và (2) \(\Rightarrow BE=ME\left(đpcm\right)\)
c) mai nốt :V
c) El à trung điểm MB;H là trung điểm AB
-> EH là đường trung bình tam giác MAB
=> EH// MA
=> góc EHB= góc MAB ( đồng vị )
Mà góc MAB = góc AKB ( = 1/2 số đo cung AB )
=> góc EHB= góc AKB
mà góc EHB+ góc IHB = 180 độ
=> góc AKB + góc IHB = 180 độ
=> BHIK nội tiếp
=> góc BHK= BIK mà góc BHK= 90 độ
=> góc BIK= 90 độ
=> AK vuông góc với BI
\(\sqrt{\frac{2x-3}{2x^2+1}}\)có nghĩa <=> \(\frac{2x-3}{2x^2+1}\ge0\Leftrightarrow2x-3\ge0\Leftrightarrow x\ge\frac{3}{2}\)( vì 2x2 + 1 > 0 )
\(\sqrt{\frac{2x-3}{2x^2+1}}\) > hoặc =0
=> 2x-3 > hoặc =0 ( vì 2x^2 + >0 )
=> 2x > hoặc =3
=>x > hoặc = 3/2
\(P=\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)
\(P=\sqrt{\left(2x-1\right)^2}+\sqrt{\left(2x-3\right)^2}\)
\(P=\left|2x-1\right|+\left|2x-3\right|\)
\(P=\left|2x-1\right|+\left|3-2x\right|\ge\left|2x-1+3-2x\right|=\left|2\right|=2\)
dấu "=" xảy ra khi và chỉ khi
\(\hept{\begin{cases}2x-1\ge0\\3-2x\ge0\end{cases}}\hept{\begin{cases}x\ge\frac{1}{2}\\x\le\frac{3}{2}\end{cases}< =>\frac{1}{2}\le}x\le\frac{3}{2}\)
vậy \(MIN:P=2\)
Phương trình có hai nghiệm phân biệt <=> Δ ≥ 0 <=> (-2)2 - 4.1/2.(m-1) ≥ 0 <=> 4 - 2m + 2 ≥ 0 <=> m ≤ 3
Theo hệ thức Viète : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=4\\x_1x_2=\frac{c}{a}=2m-2\end{cases}}\)
Ta có : \(x_1x_2\left(\frac{x_1^2}{2}+\frac{x_2^2}{2}\right)+48=0\Leftrightarrow x_1x_2\left(x_1^2+x_2^2\right)+96=0\)
\(\Leftrightarrow x_1x_2\left[\left(x_1+x_2\right)^2-2x_1x_2\right]+96=0\Leftrightarrow\left(2m-2\right)\left(18-2m\right)+96=0\)
\(\Leftrightarrow m^2-10-15=0\)
\(\Delta=b^2-4ac=100+60=160\)
\(\Delta>0\), áp dụng công thức nghiệm thu được \(m_1=5+2\sqrt{10}\left(ktm\right);m_2=5-2\sqrt{10}\left(tm\right)\)
Vậy với \(m=5-2\sqrt{10}\)thì thỏa mãn đề bài
\(a=\frac{1}{2};b=-2;c=m-1\)
\(\Delta=\left(-2\right)^2-4.\frac{1}{2}.\left(m-1\right)\)
\(\Delta=4-2\left(m-1\right)\)
\(\Delta=4-2m+2\)
\(\Delta=6-2m\)
để pt có 2 nghiệm phân biệt thì \(6-2m>0\)
\(< =>m< 3\)
áp dụng vi - ét
\(\hept{\begin{cases}x_1+x_2=\frac{2}{\frac{1}{2}}=4\\x_1x_2=\frac{m-1}{\frac{1}{2}}=2m-2\end{cases}}\)
\(x_1x_2\left(\frac{x_1^2}{2}+\frac{x_2^2}{2}\right)+48=0\)
\(\left(2m-2\right)\left(\frac{\left(x_1+x_2\right)^2-2x_1x_2}{2}\right)+48=0\)
\(\left(2m-2\right)\left(\frac{4^2-4m-4}{2}\right)+48=0\)
\(\left(2m-2\right)\left(6-2m\right)+48=0\)
\(12m-12-4m^2+4m+48=0\)
\(-4m^2+16m+36=0\)
\(\sqrt{\Delta}=\sqrt{16^2-4.\left(-4\right).36}=8\sqrt{13}\)
\(m_1=\frac{8\sqrt{13}-16}{-8}=2-\sqrt{13}\left(TM\right)\)
\(m_2=\frac{-8\sqrt{13}-16}{-8}=2+\sqrt{13}\left(KTM\right)\)
vậy \(m=2-\sqrt{13}\)thì thỏa mãn yêu cầu \(x_1x_2\left(\frac{x_1^2}{2}+\frac{x_2^2}{2}\right)+48=0\)
ĐK : x >= 0
\(D=x+\sqrt{x}+1=x+\sqrt{x}+\frac{1}{4}+\frac{3}{4}\)
\(=\left(\sqrt{x}+\frac{1}{2}\right)^2+\frac{3}{4}\ge1\)
Dấu ''='' xảy ra khi x = 0
Vậy GTNN của D bằng 1 tại x = 0
\(D=x+\sqrt{x}+1\left(ĐKXĐ:x\ge0\right)\)
Ta có: \(D=x+\sqrt{x}+1\ge1\forall x\ge0\)
Dấu '' = '' xảy ra khi \(x=0\)
Vậy \(minD=1\Leftrightarrow x=0\)
1. \(\hept{\begin{cases}x-2=a+1\\3x+y=7a+3\end{cases}}\) mà a = 2y + 1
\(\Leftrightarrow\hept{\begin{cases}x-2=2y+1+1\\3x+y=7\left(2y+1\right)+3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x-2=2y+2\\3x+y=14y+10\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}3x-6=6y+6\\3x+y=14y+10\end{cases}}\)
\(\Rightarrow y+6=8y+4\)
\(\Leftrightarrow7y=2\Leftrightarrow y=\frac{2}{7}\)
2. \(\hept{\begin{cases}x-2y=a+1\\3x+y=7a+3\end{cases}}\) trong đó a = 1; a' = 3; b = -2; b' = 1
\(\Rightarrow\hept{\begin{cases}\frac{a}{a'}=\frac{1}{3}\\\frac{b}{b'}=-2\end{cases}}\Rightarrow\frac{a}{a'}\ne\frac{b}{b'}\) nên hệ pt có nghiệm duy nhất với mọi a
a, chưa nghĩ ra