Rút gọn các biểu thức sau:
a) $A=\sqrt{\dfrac{2}{3}}+2 \sqrt{\dfrac{3}{2}}-\sqrt{6}$
b) $B=3 \sqrt{\dfrac{2}{5}}+\sqrt{\dfrac{5}{2}}-2 \sqrt{10}$
c) $C=-\sqrt{\dfrac{3}{5}}+3 \sqrt{\dfrac{5}{3}}-4 \sqrt{15}$.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\sqrt{\frac{3}{2}}=\frac{\sqrt{3}}{\sqrt{2}}=\frac{\sqrt{3}.\sqrt{2}}{2}=\frac{\sqrt{6}}{2}\)
b) \(\sqrt{\frac{3a}{5b}}=\frac{\sqrt{3a}}{\sqrt{5b}}=\frac{\sqrt{3a}.\sqrt{5b}}{5b}=\frac{\sqrt{15ab}}{5b}\left(a;b>0\right)\)
c) \(\sqrt{\frac{5}{12}}=\frac{\sqrt{5}}{\sqrt{12}}=\frac{\sqrt{5}.\sqrt{12}}{12}=\frac{\sqrt{60}}{12}=\frac{2\sqrt{15}}{12}=\frac{\sqrt{15}}{6}\)
d) \(\sqrt{\frac{5x}{18y}}=\frac{\sqrt{5x}}{\sqrt{18y}}=\frac{\sqrt{5x}}{\sqrt{3^2.2y}}=\frac{\sqrt{5x}}{3\sqrt{2y}}\)
\(=\frac{\sqrt{5x}.\sqrt{3y}}{3.2y}=\frac{\sqrt{15xy}}{6xy}\)
a) Ta sắp xếp theo thứ tự tăng dần như sau:
\(2\sqrt{6};\sqrt{29};4\sqrt{2};3\sqrt{5}\)
b) Ta sắp xếp theo thứ tự tăng dần như sau:
\(\sqrt{38};2\sqrt{14};3\sqrt{7};6\sqrt{2}\)
a) Ta có:
\(2\sqrt{3}=\sqrt{2^2.3}=\sqrt{12}.\)
Mà \(\sqrt{12}< \sqrt{13}\)
Nên \(2\sqrt{3}< \sqrt{13}\)
a, \(-\frac{2}{3}\sqrt{ab}=-\sqrt{\frac{4ab}{9}}\)
b, \(a\sqrt{\frac{3}{a}}=\sqrt{\frac{3a^2}{a}}=\sqrt{3a}\)
c, \(a\sqrt{7}=\sqrt{7a^2}\)
d, \(b\sqrt{3}=\sqrt{3b^2}\)
e, \(ab\sqrt{\frac{a}{b}}=\sqrt{\frac{a^3b^2}{b}}=\sqrt{a^3b}\)
f, \(ab\sqrt{\frac{1}{a}+\frac{1}{b}}=\sqrt{\frac{a^2b^2}{a}+\frac{a^2b^2}{b}}=\sqrt{ab^2+a^2b}\)
a) \(A=4\sqrt{x^2+1}-2\sqrt{16\left(x^2+1\right)}+5\sqrt{25\left(x^2+1\right).}\)
\(=4\sqrt{x^2+1}-2.4\sqrt{x^2+1}+5.5\sqrt{x^2+1}\)
\(=4\sqrt{x^2+1}-8\sqrt{x^2+1}+25\sqrt{x^2+1}\)
\(=\left(4-8+25\right)\sqrt{x^2+1}\)
\(=21\sqrt{x^2+1}\)
b) \(B=\frac{2}{x+y}\sqrt{\frac{3\left(x+y\right)^2}{4}}\)
\(B=\frac{2}{x+y}.\frac{\sqrt{3}\left(x+y\right)}{2}\)
\(B=\frac{\sqrt{3}\left(x+y\right)}{x+y}\)
\(B=\sqrt{3}\)
tự làm