Tìm ba số tự nhiên liên tiếp biết tích của hai số sau lớn tích của hai số đầu là 192
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(P\left(x\right)=x^3+3x^2-x+3^n\)
Nếu \(P\left(x\right)\) có nghiệm hữu tỉ \(x=\dfrac{p}{q}\left(p\inℤ,q\inℕ^∗;\left(p,q\right)=1\right)\) thì \(p|3^n,q|1\Rightarrow q=1\) và \(p=3^k\left(k\le n\right)\)
Vậy \(x=3^k\) sẽ là nghiệm hữu tỉ duy nhất của \(P\left(x\right)\) hay \(P\left(3^k\right)=0\)
\(\Leftrightarrow\left(3^k\right)^3+3.\left(3^k\right)^2-3^k+3^n=0\)
\(\Leftrightarrow3^{3k}+3^{2k+1}-3^k+3^n=0\)
\(\Leftrightarrow3^{2k}+3^{k+1}-1+3^{n-k}=0\)
Ta thấy với \(n>k\) thì \(3^{2k}+3^{k+1}+3^{n-k}⋮3\) và \(0⋮3\) nên từ đây suy ra \(1⋮3\), vô lý.
Với \(n=k\) thì \(3^{2n}+3^{n+1}=0\), vô lý vì \(3^{2n}+3^{n+1}>0\) với \(n\inℕ^∗\)
Vậy \(P\left(x\right)\) không thể có nghiệm hữu tỉ. Do đó, nếu \(x^3+3x^2-x+3=0\) thì \(x\) chỉ có thể là một số vô tỉ. (đpcm)
a: \(\dfrac{1}{4003}>0;0>-\dfrac{75}{106}\)
Do đó: \(\dfrac{1}{4003}>-\dfrac{75}{106}\)
b: \(-19< -17\)
=>\(-\dfrac{19}{31}< -\dfrac{17}{31}\)
c: \(\dfrac{-33}{37}>\dfrac{-34}{37}\)
mà \(-\dfrac{34}{37}>-\dfrac{34}{35}\)
nên \(\dfrac{-33}{37}>-\dfrac{34}{35}\)
d: \(\dfrac{-13}{77}=\dfrac{-13\cdot205}{77\cdot205}=\dfrac{-2665}{77\cdot205}\)
\(\dfrac{-34}{205}=\dfrac{-34\cdot77}{205\cdot77}=\dfrac{-2618}{205\cdot77}\)
mà -2665<-2618
nên \(\dfrac{-13}{77}< \dfrac{-34}{205}\)
e: \(\dfrac{-456}{461}=-1+\dfrac{5}{461};\dfrac{-123}{128}=-1+\dfrac{5}{128}\)
461>128
=>\(\dfrac{5}{461}< \dfrac{5}{128}\)
=>\(\dfrac{5}{461}-1< \dfrac{5}{128}-1\)
=>\(\dfrac{-456}{461}< \dfrac{-123}{128}\)
\(\widehat{mOn}=\widehat{xOy}\)(hai góc đối đỉnh)
mà \(\widehat{xOy}=85^0\)
nên \(\widehat{mOn}=85^0\)
Ta có: \(\widehat{nOm}+\widehat{xOn}=180^0\)(hai góc kề bù)
=>\(\widehat{xOn}+85^0=180^0\)
=>\(\widehat{xOn}=180^0-85^0=95^0\)
Ta có: \(\widehat{xOn}=\widehat{yOm}\)(hai góc đối đỉnh)
mà \(\widehat{xOn}=95^0\)
nên \(\widehat{yOm}=95^0\)
\(1,4\left(51\right)=\dfrac{479}{330};3,1\left(45\right)=\dfrac{173}{55}\)
Tổng các tử số là 479+173=652
=>Chọn C
\(\left(\dfrac{-4}{9}\right)^2=\dfrac{16}{81}\Rightarrow x=2\)
\(\left(-\dfrac{1}{3}\right)^3=\dfrac{-1}{27}\Rightarrow x=1\)
\(\left(-\dfrac{1}{3}\right)^4=\dfrac{1}{81}\Rightarrow x=1\)
\(\left(-\dfrac{4}{9}\right)^x=\dfrac{16}{81}\\ \left(-\dfrac{4}{9}\right)^x=\left(\dfrac{4}{9}\right)^2\\ \left(-\dfrac{4}{9}\right)^x=\left(-\dfrac{4}{9}\right)^2\\ x=2\\ -----------\\ \left(-\dfrac{1}{3}\right)^{2x+1}=-\dfrac{1}{27}\\ \left(-\dfrac{1}{3}\right)^{2x+1}=\left(-\dfrac{1}{3}\right)^3\\ 2x+1=3\\ 2x=3-1=2\\ x=\dfrac{2}{2}=1\\ -----------\\ \left(-\dfrac{1}{3}\right)^{3x+1}=\dfrac{1}{81}\\\left(-\dfrac{1}{3}\right)^{3x+1}=\left(\dfrac{1}{3}\right)^4\\ \left(-\dfrac{1}{3}\right)^{3x+1}=\left(-\dfrac{1}{3}\right)^4\\ 3x+1=4\\ 3x=4-1=3\\ x=\dfrac{3}{3}=1\)
\(\left(\dfrac{7}{5}\right)^x=\dfrac{49}{25}\Leftrightarrow\left(\dfrac{7}{5}\right)^x=\left(\dfrac{7}{5}\right)^2\Leftrightarrow x=2\)
Gọi ba số tự nhiên liên tiếp là a;a+1;a+2
Tích hai số sau lớn hơn tích hai số đầu là 192 nên ta có:
\(\left(a+2\right)\left(a+1\right)-a\left(a+1\right)=192\)
=>\(a^2+3a+2-a^2-a=192\)
=>2a+2=192
=>a+1=96
=>a=95
=>a+1=96; a+2=97
vậy: ba số cần tìm là 95;96;97
Gọi 3 STN liên tiếp lần lượt là: \(x;x+1;x+2\left(ĐK:x\inℕ\right)\)
Tích hai số sau: \(\left(x+1\right)\left(x+2\right)\) và tích hai số đầu: \(x\left(x+1\right)\)
Theo bài ra, ta có:
\(\left(x+1\right)\left(x+2\right)-x\left(x+1\right)=192\\ \Rightarrow x^2+x+2x+2-x^2-x=192\\ \Rightarrow2x=190\\ \Rightarrow x=95\left(TM\right)\)
Vậy 3 STN phải tìm: 95;96;97