Câu 4: Cho tam giác ABC cân tại A. Trên BC lấy hai điểm D và E sao cho BD = DE = EC. Chọn câu đúng:
- A. BAD=EAC
- B.EAC=DAE
- C.BAD<DAE
- D.Cả A,B,C đúng
- BADˆ=EACˆ
- ˆ<DAEˆ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\widehat{A}\) : \(\widehat{B}\): \(\widehat{C}\) = 3 : 5 : 7
\(\dfrac{\widehat{A}}{3}\) = \(\dfrac{\widehat{B}}{5}\) = \(\dfrac{\widehat{C}}{7}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{\widehat{A}}{3}\) = \(\dfrac{\widehat{B}}{5}\) = \(\dfrac{\widehat{C}}{7}\) = \(\dfrac{\widehat{A}+\widehat{B}+\widehat{C}}{3+5+7}\) = \(\dfrac{180^0}{15}\) = `120
\(\widehat{A}\) = 120 \(\times\) 3 = 360
\(\widehat{B}\) = 120 \(\times\) 5 = 600
\(\widehat{C}\) = 120 \(\times\) 7 = 840
Vì 360 < 600 < 840
Vậy \(\widehat{A}\) < \(\widehat{B}\) < \(\widehat{C}\) nên BC < AC < AB (do trong tam giác cạnh đối diện với góc lớn hơn thì lớn hơn và ngược lại)
A B C M N D
a/ Xét tg AMB và tg NMC có
MB=MC (gt)
MA=MN (gt)
\(\widehat{AMB}=\widehat{NMC}\) (góc đối đỉnh)
=> tg AMB = tg NMC (c.g.c)
b/
Ta có
tg AMB = tg NMC (cmt) \(\Rightarrow\widehat{ABC}=\widehat{BCN}\) Hai góc trên ở vị trí sole trong
=> AB//CN
\(\Rightarrow\widehat{ADC}=\widehat{DCN}\) (góc so le trong) mà \(\widehat{ADC}=90^o\)
\(\Rightarrow\widehat{DCN}=90^o\)
Lời giải:
Nếu $x< 22$ thì $x-22< 0, x-23< 0\Rightarrow (x-22)(x-23)>0$
Nếu $x> 23$ thì $x-22>0, x-23>0\Rightarrow (x-22)(x-23)>0$
Nếu $x=22$ hoặc $x=23$ thì $(x-22)(x-23)=0$
Từ đây suy ra $P=(x-22)(x-23)$ nhận giá trị nhỏ nhất bằng 0 khi $x=22$ hoặc $x=23$.
\(1+\dfrac{7}{n\left(n+8\right)}=\dfrac{n^2+8n+7}{n\left(n+8\right)}=\dfrac{\left(n+1\right)\left(n+7\right)}{n\left(n+8\right)}\)
\(\Rightarrow P=\left(1+\dfrac{7}{1.\left(1+8\right)}\right)\left(1+\dfrac{7}{2.\left(2+8\right)}\right)\left(1+\dfrac{7}{3.\left(3+8\right)}\right)...\left(1+\dfrac{7}{50.\left(50+8\right)}\right)\)
\(=\left(\dfrac{2.8}{1.9}\right).\left(\dfrac{3.9}{2.10}\right).\left(\dfrac{4.10}{3.11}\right)...\left(\dfrac{51.57}{50.58}\right)\)
\(=\dfrac{2.3.4...51}{1.2.3...50}.\dfrac{8.9.10...57}{9.10.11...58}=\dfrac{51}{1}.\dfrac{8}{58}=\dfrac{204}{29}\)
\(\dfrac{x-y}{2x+y}=\dfrac{1}{3}\) \(\Rightarrow3\left(x-y\right)=2x+y\)
\(\Rightarrow3x-3y=2x+y\)
\(\Rightarrow x=4y\)
\(\Rightarrow T=\dfrac{x^2}{x^2+y^2}=\dfrac{\left(4y\right)^2}{\left(4y\right)^2+y^2}=\dfrac{16y^2}{16y^2+y^2}=\dfrac{16y^2}{17y^2}=\dfrac{16}{17}\)
theo đề bài ta có: x/y=4/7 => x= \(\dfrac{4}{7}y\)
Thay vào biểu thức x.y=112
=>\(\dfrac{4}{7}y^2\)=112
<=>\(y^2\)=112:\(\dfrac{4}{7}\)
<=>\(y^2\)=196
<=>\(\left[{}\begin{matrix}y=14\\y=-14\end{matrix}\right.\)
Với y=14 => x=\(\dfrac{4}{7}.14\)=\(8\)
VỚi y=-14 => x=\(\dfrac{4}{7}.\left(-14\right)\)=-8
D. Cả A, B, C đều đúng