Tìm hai số tự nhiên và () có BCNN bằng và ƯCLN bằng .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.A = 21 + 22 + 23 + 24 + ... + 259 + 260
Xét .dãy số: 1; 2; 3; 4; .... 59; 60 Dãy số này có 60 số hạng vậy A có 60 hạng tử.
vì 60 : 2 = 30 nên nhóm hai số hạng liên tiếp của A vào một nhóm thì ta được:
A = (21 + 22) + (23 + 24) +...+ (259 + 260)
A = 2.(1 + 2) + 23.(1 +2) +...+ 259.(1 +2)
A =2.3 + 23.3 + ... + 259.3
A =3.( 2 + 23+...+ 259)
Vì 3 ⋮ 3 nên A = 3.(2 + 23 + ... + 259)⋮3 (đpcm)
\(\overline{21x}\) ⋮ 5 và 3
Vì \(\overline{21x}\) ⋮ 5 ⇒ \(x\) = 0; 5 (1)
Vì \(\overline{21x}\) ⋮ 3 ⇒ 2 + 1 + \(x\) ⋮ 3 ⇒ \(x\) ⋮ 3
⇒ \(x\) \(\in\) {0; 3; 6; 9} (2)
Kết hợp (1) và (2) ta có: \(x\) = 0
Chọn A. \(x\) = 0
A = \(\dfrac{8n+3}{6n+2}\) (n \(\in\) N)
Gọi ước chung lớn nhất của 8n + 3 và 6n + 2 là d
Ta có: \(\left\{{}\begin{matrix}8n+3⋮d\\6n+2⋮d\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}3.\left(8n+3\right)⋮d\\4.\left(6n+2\right)⋮d\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}24n+9⋮d\\24n+8⋮d\end{matrix}\right.\)
⇒ 24n + 9 - (24n + 8) ⋮ d
⇒ 24n + 9 - 24n - 8 ⋮ d ⇒ 1 ⋮ d ⇒ d = 1
Vậy A = \(\dfrac{8n+3}{6n+2}\) là phân số tối giản (đpcm)
a, 388 : a dư 38 nên 388 - 38 ⋮ a ⇒ 350 ⋮ a ( a > 38)
508 ⋮ a dư 18 nên 508 - 18 ⋮ a ⇒ 490 ⋮ a
⇒ a \(\in\) ƯC(350; 490)
350 = 2.52.7; 490 = 2.5.72
ƯCLN(350;490) = 2.5.7 = 70
70 = 2.5.7
a \(\in\){1; 2; 5; 7; 10; 14; 35; 70}
Vì a > 38 nên a = 70
a, 388 : a dư 38 nên 388 - 38 ⋮ a ⇒ 350 ⋮ a ( a > 38)
508 ⋮ a dư 18 nên 508 - 18 ⋮ a ⇒ 490 ⋮ a
⇒ a ƯC(350; 490)
350 = 2.52.7; 490 = 2.5.72
ƯCLN(350;490) = 2.5.7 = 70
70 = 2.5.7
a {1; 2; 5; 7; 10; 14; 35; 70}
Vì a > 38 nên a = 70
90 = 2.32.5; 525 = 3.52.7
ƯCLN(90; 525) = 3.5 = 15
Vì a chia cho 5, 7, 11 lần lượt có số dư là: 3; 4; 6 nên a thêm vào 192 đơn vị thì chia hết cho cả 5; 7; 11
Ta có : \(\left\{{}\begin{matrix}a+192⋮5\\a+192⋮7\\a+192⋮11\end{matrix}\right.\)
⇒ a + 192 \(\in\) BC(5; 7; 11)
5 = 5; 7 = 7; 11 = 11 ⇒ BCNN(5; 7; 11) = 5.7.11 = 385
⇒ a + 192 = 385.k (k \(\in\) N*)
⇒ a = 385.k - 192 (k \(\in\) N*)
Dùng phương pháp phản chứng em nhé.
Giả sử tồn tại một số chính phương n thỏa mãn đề bài khi đó
Vì n là số chính phương nên n chia 3 chỉ có thể dư 1 hoặc không dư (tính chất của số chính phương)
Mặt khác ta lại có: Tổng các chữ số của n là 2024
2024 : 3 = 674 dư 2
⇒ A : 3 dư 2 (trái với giải thiết)
Vậy điều giả sử là sai nên không tồn tại số tự nhiên n nào thỏa mãn đề bài.
Kết luận n \(\in\) \(\varnothing\)
Lời giải:
Tổng các chữ số của $n$ là $2024$. Ta có $2+0+2+4=8$ nên $n$ chia cho $9$ dư $8$.
Mà 1 số chính phương khi chia cho $9$ dư $0,1,4,7$ nên không tồn tại $n$ thỏa mãn đề.
Gọi số tự nhiên thỏa mãn đề bài là A, khi viết thêm chữ số 2 vào bên phải số đó ta được số mới là: \(\overline{A2}\)
Theo bài ra ta có: \(\overline{A2}\) - A = 3341
A x 10 + 2 - A = 3341
A x 10 - A = 3341 - 2
9A = 3339
A = 3339 : 9
A = 371
Vậy số tự nhiên cần tìm là 371
ƯCLN(a;b) = 16
a = 16.d; b = 16.k; (d;k) = 1; d;k ≥ 1
Theo bài ra ta có: 16.k.16.d = 240.16
k.d = 240.16:(16.16)
k.d = 15
15 = 3.5 Ư(15) = {1; 3; 5;15}
(k;d) = (1;15); (3;5); (5; 3); (15; 1)
Lập bảng ta có:
Vì 16 < a < b nên (a; b) = (48; 80)
ƯCLN(a;b) = 16
a = 16.d; b = 16.k; (d;k) = 1; d;k ≥ 1
Theo bài ra ta có: 16.k.16.d = 240.16
k.d = 240.16:(16.16)
k.d = 15
15 = 3.5 Ư(15) = {1; 3; 5;15}
(k;d) = (1;15); (3;5); (5; 3); (15; 1)
Lập bảng ta có:
Vì 16 < a < b nên (a; b) = (48; 80)