cho hình thang MNPQ ,MN là đáy.ABCD lần lượt là trung điểm của MN;NP;PQ;QM.a Chứng minh ABCD là hình bình hành.b MNPQ thêm điều kiện gì để ABCD là hình chữ nhật?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a, (x+2)(x−2)−(x−3)(x+1)(x+2)(x-2)-(x-3)(x+1)
=x2−4−(x2−3x+x− 3)=x2-4-(x2-3x+x- 3)
=x2− 4−x2+2x+3=x2- 4-x2+2x+3
=2x−1=2x-1
2.
a, x2−4+(x−2)2x2-4+(x-2)2
=(x−2)(x+2) +(x−2)2=(x-2)(x+2) +(x-2)2
=(x−2)(x+2+x−2)=(x-2)(x+2+x-2)
=2x(x−2)=2x(x-2)
b, x3−2x2+x−xy2x3-2x2+x-xy2
=x(x2− 2x+1−y2)=x(x2- 2x+1-y2)
=x[(x−1)2 −y2]=x[(x-1)2 -y2]
=x(x−1−y)(x−1+y)=x(x-1-y)(x-1+y)
c, x3−4x2−12x+27x3-4x2-12x+27
=(x3+27)−(4x2+12x)=(x3+27)-(4x2+12x)
=(x+3)(x2−3x+9)−4x(x+3)=(x+3)(x2-3x+9)-4x(x+3)
=(x+3)(x2−3x+9−4x)=(x+3)(x2-3x+9-4x)
=(x+3)(x2−7x+9)

TL :
\(3x^2+6x=0\)
\(x=3^2+6x0\)
\(x=60:3\)
\(x=20-x^2\)
\(x=20-3\)
\(x=17\)
HT
TL
3x2 + 6x = 0
3x . ( x + 2 ) = 0
=>3x = 0 hoặc (x+2) = 0
=> x = 0 hoặc x = 2
cho mình xin k bn nhé

A. Trắc nghiệm: 1.A; 2.B; 3.D; 4.D; 5.B; 6.C; 7.B; 8.C
B. Tự luận
Bài 4:
a/ Ta có AB//CD; \(AM\in AB;CN\in CD\) => AM//CN
AN//CM (gt)
=> AMCN là hbh (Tứ giác có các cặp cạnh đối // với nhau từng đôi 1 là hbh)
b/ Ta có
AD//CD; \(CI\in BC\) => AD//CI
AD=BC mà BC=CI => AD=CI
=> ACID là hbh (Tứ giác có cặp cạnh đối // và bằng nhau là hbh) => AC=DI (trong hbh các cặp cạnh đối = nhau từng đôi 1)
c/
Ta có
AM=BM (gt) \(\Rightarrow AM=\frac{AB}{2}\) mà AB=CD \(\Rightarrow AM=\frac{CD}{2}\)
Mà AMCN là hbh => AM=CN => \(CN=\frac{CD}{2}\) => N là trung điểm của CD (1)
AMCN là hbh => OA=OC (trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường) => O là trung điểm của AC (2)
Từ (1) và (2) => NO là đường trung binhd của tg ACD (đường thẳng đi qua trung điểm của 2 cạnh một tam giác là đường trung bình)
d/ Trong hbh ACID nối AI cắt CD tại N' => N' là trung điểm của CD (trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường)
Mà N là trung điểm của CD (cmt)
=> N trùng N'
Ta có
AMCN là hbh => MC//AN (Trong hbh các cặp cạnh đối // với nhau từng đôi 1)
Mà \(NI\in AN\)
=> MC//NI
Bài 5
\(A=-\left(y^4-8y^2+16\right)+20=-\left(y^2-4\right)^2+20\)
Ta có \(\left(y^2-4\right)\ge0\Rightarrow-\left(y^2-4\right)^2\le0\)
\(\Rightarrow A=-\left(y^2-4\right)+20\le20\)
Vậy giá trị lớn nhất của A là 20
Bài 5 (tiếp)
\(-\left(y^2-4\right)+20=20\Rightarrow y^2-4=0\Rightarrow y^2=4\Rightarrow y=\pm2\)

a,Ta có AM+MB=AB
NC+CD=DC
mà AB=CD(ABCD là HCN)
AM = NC (gt)
=> MB=DN (1)
Ta lại có AB//DC nên MB//DN (2)
Từ (1) và (2) => MBND là HBH
b,ta có : P là trung điểm AB
K là trung điểm AH
=>PK là đường trung bình tam giác AHB
=PK//BH (*)
mà BH//DM (MBND là HBH) (**)
từ (*) và (**) => PK//DM (ĐPCM)
c,do PK là đường trung bình
=>PK=1/2BH
=>PK = BH/2 = 6/2 =3cm
P là trung điểm AB
=> AP = 1/2AB = AB/2 = 10/2 = 5cm
ta có BH⊥AC mà BH//PK => AC⊥PK
=>△APK vuông tại K
S△APK là = 1/2AK.KP = 1/2.5.3 = 7,5

a. ta có \(\hept{\begin{cases}AB\text{//}MP\text{ và }AB=\frac{1}{2}MP&;CD\text{//}MP\text{ và }CD=\frac{1}{2}MP&\end{cases}}\)
Do đó AB//CD và AB=CD
do đó ABCD là hình bình hành.
b. để ABCD là hình chữ nhật thì cần 1 góc vuông, nên ta cần hai đường chéo của hình thang NMPQ là NP và NQ vuông góc với nhau