A=1.2+2.3+3.4+.....+50.51=44200
S
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2+2^2+2^3+...+2^{100}\)
\(2A=2\times\left(2+2^2+2^3+...+2^{100}\right)\)
\(2A=2^2+2^3+2^4+...+2^{101}\)
\(2A-A=\left(2^2+2^3+2^4+...+2^{101}\right)-\left(2+2^2+2^3+...+2^{100}\right)\)
\(A=2^{101}-2\)
\(2\left(A+2\right)=2^{2x}\)
\(2\left[\left(2^{101}-2\right)+2\right]=2^{2x}\)
\(2\times2^{101}=2^{2x}\)
\(2^{102}=2^{2x}\)
\(2x=102\)
\(x=\dfrac{102}{2}\)
\(x=51\)
5x+1 - 5x = 100.2529
5x.(5-1) = 100.(52)29
5x.4 = 100.558
5x = 100.558:4
5x = 25.558
5x = 52.558
5x = 560
x = 60
Đề chứng minh VT < \(\dfrac{1}{50}\) , nếu chứng minh VT < 50 thì lại mất đi cái hay của bài toán vì quá đơn giản. VT có 50 số hạng, dễ thấy mỗi số hạng đều bé hơn 1. Dù cộng tất cả lại cũng bé hơn 50 chứ chưa nói đến lại trừ đi.
Đặt: \(A=\dfrac{1}{7^2}-\dfrac{1}{7^4}+\dfrac{1}{7^6}-\dfrac{1}{7^8}+...+\dfrac{1}{7^{98}}-\dfrac{1}{7^{100}}\)
Ta có:
\(7^2A=7^2\left(\dfrac{1}{7^2}-\dfrac{1}{7^4}+\dfrac{1}{7^6}-\dfrac{1}{7^8}+...+\dfrac{1}{7^{98}}-\dfrac{1}{7^{100}}\right)\\ =1-\dfrac{1}{7^2}+\dfrac{1}{7^4}-\dfrac{1}{7^6}+...+\dfrac{1}{7^{96}}-\dfrac{1}{7^{98}}\)
\(\Rightarrow A+7^2A=\dfrac{1}{7^2}-\dfrac{1}{7^4}+\dfrac{1}{7^6}-\dfrac{1}{7^8}+...+\dfrac{1}{7^{98}}-\dfrac{1}{7^{100}}+1-\dfrac{1}{7^2}+\dfrac{1}{7^4}-\dfrac{1}{7^6}+...+\dfrac{1}{7^{96}}-\dfrac{1}{7^{98}}\\ =1-\dfrac{1}{7^{100}}\\ \Leftrightarrow50A=1-\dfrac{1}{7^{100}}\\ \Rightarrow50A< 1\\ \Rightarrow A< \dfrac{1}{50}\)
+ \(A=11^{15}+11^{14}+11^{13}=11^{13}\left(11^2+11+1\right)\\ =11^{13}\left(121+11+1\right)=133.11^{13}\)
Vì \(133⋮7\\ \Rightarrow33.11^{13}⋮7\\ \Rightarrow A⋮7\)
+ \(A=27^5+9^7+3^{12}=\left(3^3\right)^5+\left(3^2\right)^7+3^{12}\\ =3^{15}+3^{14}+3^{12}=3^{12}\left(3^3+3^2+1\right)\\ =37.3^{12}⋮37\Rightarrow A⋮37\)
+ \(A=2^{100}+2^{101}+2^{102}=2^{100}\left(1+2+2^2\right)\\ =7.2^{100}⋮7\Rightarrow A⋮7\)
Ta có: 3S = 1.2.(3-0) + 2.3.(4-1) + 3.4.(5-2) + .....+ 50.51.(52 -49)
= 1.2.3 - 0 + 2.3.4 - 1.2.3 + 3.4.5 -2.3.4 + .....+ 50.51.52 - 49.50.51
3S = 50.51.52
S = 50.17.52 =44200
Giúp mình với