Giúp mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\frac{\sqrt{x}-\left(1-\sqrt{x}\right)}{\sqrt{x}.\left(1-\sqrt{x}\right)}:\left(\frac{2x+\sqrt{x}-1}{1-x}+\frac{\sqrt{x}.\left(2x+\sqrt{x}-1\right)}{1+x\sqrt{x}}\right)\)
\(=\frac{2\sqrt{x}-1}{\sqrt{x}-x}:\left[\left(2x+\sqrt{x}-1\right).\left(\frac{1}{1-x}+\frac{\sqrt{x}}{1+x\sqrt{x}}\right)\right]\)
Xét \(\frac{1}{1-x}+\frac{\sqrt{x}}{1+x\sqrt{x}}=\frac{\left(x\sqrt{x}+1\right)+\sqrt{x}-x\sqrt{x}}{\left(1-x\right)\left(1+x\sqrt{x}\right)}=\frac{1+\sqrt{x}}{\left(1-x\right)\left(1+x\sqrt{x}\right)}\)
\(\Rightarrow P=\frac{2\sqrt{x}-1}{\sqrt{x}-x}:\frac{\left(2x+\sqrt{x}-1\right).\left(1+\sqrt{x}\right)}{\left(1-x\right)\left(1+x\sqrt{x}\right)}\)
\(=\frac{2\sqrt{x}-1}{\sqrt{x}\left(1-\sqrt{x}\right)}.\frac{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)\left(1+x\sqrt{x}\right)}{\left(2x+\sqrt{x}-1\right)\left(1+\sqrt{x}\right)}\)
\(=\frac{\left(2\sqrt{x}-1\right)\left(1+x\sqrt{x}\right)}{\sqrt{x}.\left(2\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}=\frac{1+x\sqrt{x}}{x-\sqrt{x}}\)
b, Đặt \(\sqrt{x}=a,\left(a\ge0\right)\)\(\Rightarrow P=\frac{1+a^3}{a^2-a}\), để chứng minh P > 1
thì ta chứng minh \(1+a^3>a^2-a\)
\(\Leftrightarrow a^3-a^2+a+1>0\Leftrightarrow\left(a-1\right)^3+2\left(a^2-a+1\right)>0\)
mà \(a^2-a+1=\left(a-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall a\)
\(\Rightarrow2\left(a^2-a+1\right)\ge\frac{3}{2},a\ge0\)nên \(\left(a-1\right)^3\ge1\Rightarrow a^3-a^2+a+1\ge\frac{1}{2}\)hay \(P>1\)
\(1,\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8+6\sqrt{x-1}}=5\)
\(ĐKXĐ:x\ge1\)
\(\sqrt{x-1-4\sqrt{x-1}+4}+\sqrt{x-1+6\sqrt{x-1}+9}=5\)
\(\sqrt{\left(\sqrt{x-1}-2\right)^2}+\sqrt{\left(\sqrt{x-1}+3\right)^2}=5\)
\(\left|\sqrt{x-1}-2\right|+\left|\sqrt{x-1}+3\right|=5\)
\(\orbr{\begin{cases}2-\sqrt{x-1}+\sqrt{x-1}+3=5\\\sqrt{x-1}-2+\sqrt{x-1}+3=5\end{cases}\orbr{\begin{cases}5=5\left(TM\forall x\right)\\\sqrt{x-1}=2\end{cases}\orbr{\begin{cases}5=5\\x=5\left(TM\right)\end{cases}}}}\)
vậy pt có nghiệm là \(1\le x\le+\infty\)
\(2,\sqrt{x+\sqrt{6x-9}}+\sqrt{x-\sqrt{6x-9}}=\sqrt{6}\)
\(ĐKXĐ:x\ge\frac{3}{2}\)
\(\sqrt{x+\sqrt{6}\sqrt{x-\frac{3}{2}}}+\sqrt{x-\sqrt{6}\sqrt{x-\frac{3}{2}}}=\sqrt{6}\)
\(\sqrt{x-\frac{3}{2}+\sqrt{6}\sqrt{x-\frac{3}{2}}+\frac{3}{2}}+\sqrt{x-\frac{3}{2}-\sqrt{6}\sqrt{x-\frac{3}{2}}+\frac{3}{2}}=\sqrt{6}\)
\(\sqrt{\left(\sqrt{x-\frac{3}{2}}+\frac{3}{2}\right)^2}+\sqrt{\left(\sqrt{x-\frac{3}{2}}-\frac{3}{2}\right)^2}=\sqrt{6}\)
\(\left|\sqrt{x-\frac{3}{2}}+\frac{3}{2}\right|+\left|\sqrt{x-\frac{3}{2}}-\frac{3}{2}\right|=\sqrt{6}\)
\(\orbr{\begin{cases}\sqrt{x-\frac{3}{2}}+\frac{3}{2}+\frac{3}{2}-\sqrt{x-\frac{3}{2}}=\sqrt{6}\\\sqrt{x-\frac{3}{2}}+\frac{3}{2}-\frac{3}{2}+\sqrt{x-\frac{3}{2}}=\sqrt{6}\end{cases}}\orbr{\begin{cases}3=\sqrt{6}\\2\sqrt{x-\frac{3}{2}}=\sqrt{6}\end{cases}}\)
\(\orbr{\begin{cases}3=\sqrt{6}\left(KTM\right)\\x=3\left(TM\right)\end{cases}}\)
\(3,\sqrt{x^2-5x+6}+\sqrt{x+1}=\sqrt{x-2}+\sqrt{x^2-2x-3}\)
\(ĐKXĐ:x\ge3\)
\(\left(\sqrt{x^2-5x+6}-\sqrt{2}\right)+\left(\sqrt{x+1}-\sqrt{5}\right)=\left(\sqrt{x-2}-\sqrt{2}\right)+\left(\sqrt{x^2-2x-3}-\sqrt{5}\right)\)
\(\frac{x^2-5x+4}{\sqrt{x^2-5x+6}+\sqrt{2}}+\frac{x-4}{\sqrt{x+1}+\sqrt{5}}=\frac{x-4}{\sqrt{x-2}+\sqrt{2}}+\frac{x^2-2x-8}{\sqrt{x^2-2x-3}+\sqrt{5}}\)
\(\frac{\left(x-4\right)\left(x-1\right)}{\sqrt{x^2-5x+6}+\sqrt{2}}+\frac{x-4}{\sqrt{x+1}+\sqrt{5}}=\frac{x-4}{\sqrt{x-2}+\sqrt{2}}+\frac{\left(x-4\right)\left(x+2\right)}{\sqrt{x^2-2x-3}+\sqrt{5}}\)
\(\left(x-4\right)\left(\frac{x-1}{\sqrt{x^2-5x+6}+\sqrt{2}}+\frac{1}{\sqrt{x+1}+\sqrt{5}}-\frac{1}{\sqrt{x-2}+\sqrt{2}}-\frac{x+2}{\sqrt{x^2-2x-3}+\sqrt{5}}\right)=0\)
\(\orbr{\begin{cases}x=4\left(TM\right)\\\frac{x-1}{\sqrt{x^2-5x+6}+\sqrt{2}}+\frac{1}{\sqrt{x+1}+\sqrt{5}}-\frac{1}{\sqrt{x-2}+\sqrt{2}}-\frac{x+2}{\sqrt{x^2-2x-3}-\sqrt{5}}=0\end{cases}}\)
bạn lập luận cái dưới vô nghiệm
10, \(đk:x\ge\frac{1}{2}\)
\(\sqrt{x+3}+\sqrt{2x-1}=3\)
\(\Leftrightarrow\sqrt{x+3}+\sqrt{2x-1}-3=0\)
\(\Leftrightarrow\frac{\left(\sqrt{x+3}-2\right)\left(\sqrt{x+3}+2\right)}{\sqrt{x+3}+2}+\frac{\left(\sqrt{2x-1}-1\right)\left(\sqrt{2x-1}+1\right)}{\sqrt{2x-1}+1}=0\)
\(\Leftrightarrow\frac{x+3-4}{\sqrt{x+3}+2}+\frac{2x-1-1}{\sqrt{2x-1}+1}=0\)
\(\Leftrightarrow\frac{x-1}{\sqrt{x+3}+2}+\frac{2x-2}{\sqrt{2x-1}+1}=0\)
\(\Leftrightarrow\left(x-1\right)\left(\frac{1}{\sqrt{x+3}+2}+\frac{2}{\sqrt{2x-1}+1}\right)=0\)
với x >= 1/2 thì ngoặc thứ 2 > 0
\(\Leftrightarrow x=1\left(tm\right)\)
8, đk \(\orbr{\begin{cases}x\ge0\\x\le-8\end{cases}}\)
\(x^2+8x-3=2\sqrt{x\left(x+8\right)}\)
\(\Leftrightarrow x\left(x+8\right)-3=2\sqrt{x\left(x+8\right)}\)
đặt \(\sqrt{x\left(x+8\right)}=a\left(a\ge0\right)\)
pt trở thành : \(a^2-3=2a\Leftrightarrow a^2-2a-3=0\)
\(\Leftrightarrow\left(a-3\right)\left(a+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=3\left(tm\right)\\a=-1\left(loai\right)\end{cases}}\)
a = 3 => \(\sqrt{x\left(x+8\right)}=3\Leftrightarrow x^2+8x-9=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+9\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\left(tm\right)\\x=-9\left(tm\right)\end{cases}}\)
7, đk \(x>0\)
\(\sqrt{\frac{x^2+x+1}{x}}+\sqrt{\frac{x}{x^2+x+1}}=\frac{7}{4}\)
\(\Leftrightarrow\frac{x^2+x+1}{x}+\frac{x}{x^2+x+1}+2\sqrt{\frac{x^2+x+1}{x}\cdot\frac{x}{x^2+x+1}}=\frac{49}{16}\)
\(\Leftrightarrow\frac{x^4+x^2+1+2x^3+2x^2+2x+x^2}{x\left(x^2+x+1\right)}+2=\frac{49}{16}\)
\(\Leftrightarrow\frac{x^4+2x^3+4x^2+2x+1}{x\left(x^2+x+1\right)}=\frac{17}{16}\)
\(\Leftrightarrow16x^4+32x^3+64x^2+32x+16=17x^3+17x^2+17x\)
\(\Leftrightarrow16x^4+15x^3+47x^2+15x+16=0\)
bấm mt nó ra nghiệm ảo :v
\(\left(d\right):\frac{x}{a}+\frac{y}{b}=1\)\(\left(1\right)\)
Thế \(x=a,y=0\)vào phương trình \(\left(1\right)\)thỏa mãn nên \(A\left(a,0\right)\)thuộc \(\left(d\right)\).
Thế \(x=0,y=b\)vào phương trình \(\left(1\right)\)thỏa mãn nên \(B\left(0,b\right)\)thuộc \(\left(d\right)\).
Do đó ta có đpcm.
a) Để hàm số đồng biến thì \(m-1>0\Leftrightarrow m>1\).
b) \(y=\left(m-1\right)x+4\)với mọi \(m\)
\(\Leftrightarrow\left(m-1\right)x+4-y=0\)với mọi \(m\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\4-y=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=4\end{cases}}\)
Vậy \(d\)luôn đi qua điểm \(\left(0,4\right)\).
c) \(d\)cắt \(Ox\)tại \(A\left(\frac{4}{1-m},0\right)\)(\(m\ne1\))
\(d\)cắt \(Oy\)tại \(B\left(0,4\right)\)
Diện tích tam giác \(OAB\)là:
\(\frac{1}{2}.4.\left|\frac{4}{1-m}\right|=8\Leftrightarrow\left|\frac{1}{1-m}\right|=1\Leftrightarrow\orbr{\begin{cases}1-m=1\\1-m=-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}m=0\\m=2\end{cases}}\)(thỏa).
a, \(A=\left(1+\frac{\sqrt{x}}{x+1}\right):\left(\frac{1}{\sqrt{x}-1}-\frac{2\sqrt{x}}{x\sqrt{x}+\sqrt{x}-x-1}\right)\)
\(=\frac{x+\sqrt{x}+1}{x+1}:\left(\frac{1}{\sqrt{x}-1}-\frac{2\sqrt{x}}{x\left(\sqrt{x}-1\right)+\left(\sqrt{x-1}\right)}\right)\)
\(=\frac{\left(x+\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{x-2\sqrt{x}+1}=\frac{\left(\sqrt{x}\right)^3-1}{\left(\sqrt{x}-1\right)^2}\)
b, \(A=7\Leftrightarrow\left(\sqrt{x}\right)^3-1=7\left(\sqrt{x}-1\right)^2\)
\(\Leftrightarrow\sqrt{x}^3-7x+14\sqrt{x}-8=0\)
\(\Leftrightarrow\left(\sqrt{x}^3-4x\right)-\left(3x-12\sqrt{x}\right)+\left(2\sqrt{x}-8\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-4\right)\left(x-3\sqrt{x}+2\right)=0\)
=> Tìm x
d, \(A< 1\Leftrightarrow\left(\sqrt{x}\right)^3-1< \left(\sqrt{x}-1\right)^2\)
\(\Leftrightarrow\sqrt{x}^3-1-\left(\sqrt{x}-1\right)^2< 0\)
\(\Leftrightarrow\sqrt{x}^3-x+2\sqrt{x}< 0\)
\(\Leftrightarrow\sqrt{x}.\left(x-\sqrt{x}+2\right)< 0\)
Mà \(x-\sqrt{x}+2=\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{7}{4}>0\)
\(\Rightarrow\sqrt{x}< 0\)vô lí
=> Không tìm được x