K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\left(3x-2\right)^2=14-2\cdot5^2\)

=>\(\left(3x-2\right)^2=14-2\cdot25=14-50=-36\)

mà \(\left(3x-2\right)^2>=0\forall x\)

nên \(x\in\varnothing\)

\(\left(3x-2\right)^2=14-2.5^2\)

\(\Rightarrow\left(3x-2\right)^2=14-2.25\)

\(\Rightarrow\left(3x-2\right)^2=14-50\)

\(\Rightarrow\left(3x-2\right)^2=-36\)

Vì \(\left(3x-2\right)^2\ge0\) với mọi \(x\)

\(\Rightarrow x\in\left\{\varnothing\right\}\)

30 tháng 7

80 chia hết cho a 

=> a ∈ Ư(80) 

70 chia hết cho a 

=> a ∈ Ư(70) 

=> a ∈ ƯC(80; 70) 

Mà a lớn nhất 

=> a ∈ ƯLCN(80; 70) 

Ta có:

\(80=2^4\cdot5\\ 70=2\cdot5\cdot7\\ =>a=ƯCLN\left(80;70\right)=2\cdot5=10\)

=> a = 10 

4
456
CTVHS
30 tháng 7

Để \(\left\{{}\begin{matrix}80⋮a\\70⋮a\end{matrix}\right.\) và \(a\) lớn nhất thì

\(=>a\inƯCLN\left\{70;80\right\}\)

Ta có:

\(80=2^4.5\)

\(70=7.5.2\)

\(=>ƯCLN\left\{70;80\right\}=2.5=10\)

\(=>a=10\)

Vậy số tự nhiên \(a\) là \(10\)

 

30 tháng 7

Gọi số đó là: a 

a chia 5 dư 3 

=> a có chữ số tận cùng là 3 và 8 

Mà a là số lớn nhất nhỏ hơn 200 

=> a = 198  

\(170=17\cdot2\cdot5;290=29\cdot2\cdot5\)

=>\(BCNN\left(170;290\right)=17\cdot29\cdot2\cdot5=4930\)

\(a⋮170;a⋮290\)

=>\(a\in BC\left(170;290\right)\)

mà a nhỏ nhất

nên a=BCNN(170;290)

=>a=4930

\(\overline{cab}=3\cdot\overline{ab}+8\)

=>\(100c+10a+b-30a-3b-8=0\)

=>-20a-2b+100c-8=0

=>\(\left(a;b;c\right)\in\left\{\left(4;6;1\right);\left(9;6;2\right)\right\}\)

Vậy: Số cần tìm là 461;962

\(3^{400}=\left(3^4\right)^{100}=81^{100};5^{300}=\left(5^3\right)^{100}=125^{100}\)

mà 81<125

nên \(3^{400}< 5^{300}\)

4
456
CTVHS
29 tháng 7

Ta có : 

3^400 = (3^4)^100 = 81^100

5^300 = (5^3)^100 = 125^100

Vì 81^100 < 125^100 nên

=>3^400 < 5^300

Vậy 3^400 < 5^300

29 tháng 7

ta có 2n+12= 2(n + 6)

suy ra để 2n+12 chia hết cho n+3 thì 

2(n + 6) chia hết cho n+3

nên n + 6 chia hết n +3

rồi làm tiếp nhé :)

29 tháng 7

Ta có \(n+3⋮n+3\) với mọi số tự nhiên \(n\)

nên \(2\left(n+3\right)=2n+6⋮n+3\)

Mà \(2n+12=2n+6+6\)

Do đó để \(2n+12⋮n+3\) thì \(6⋮n+3\)

nên \(n+3\) thuộc \(U'\left(6\right)=\text{1; 2; 3; 6}\)

Giải từng trường hợp ta được: \(n=0;3\)

29 tháng 7

(2002 - 79 + 15) - (-79 + 15) 

= 2002 - 79 + 15 + 79 - 15

= 2002 + (79 - 79) + (15 - 15) 

= 2002 + 0 + 0

= 2002 

29 tháng 7

2002 nhé

      12 (x - 4) + 13 (x - 4) = 50

<=> (x - 4) (12 + 13) = 50

<=> 25 (x - 4)  = 50

<=>  x - 4 = 2

<=> x = 6

12(x-4)+13(x-4)=50

=>25(x-4)=50

=>\(x-4=\dfrac{50}{25}=2\)

=>x=2+4=6