1+1=............
2+2=............
3+3=............
Ai nhanh mk tik cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1=\frac{2}{2}=1\)
\(1+1=\frac{2}{2}+\frac{2}{2}=\frac{4}{2}=2\) :)))
1 + 1 không phải là 2 , mà nó có thể là bất cứ thức gì mà ta muốn. Ngoài ra, từ mô hình này ta cũng có được câu trả lời cho“Tại sao 1 + 1 = 2”. Đó là: đây chỉ là quy ước của những phép Toán do con người đã đặt ra mà thôi, nên con người hoàn toàn có thể thay đổi nó (ví dụ, thay vì ký hiệu dấu “+” thì người ta ký hiệu dấu “-”, khi đó ta sẽ có “1 – 1 = 2” thì về bản chất cũng không có gì thay đổi, chỉ có ký hiệu là thay đổi mà thôi)
\(\sqrt{a^2+c^2}+\sqrt{b^2+d^2}\ge\sqrt{\left(a+b\right)^2+\left(c+d\right)^2}\)
Cần CM : \(\sqrt{\left(a+b\right)^2+\left(c+d\right)^2}\ge\left|a+b\right|-\left|c+d\right|\)
\(\Leftrightarrow\)\(\left(a+b\right)^2+\left(c+d\right)^2\ge\left(a+b\right)^2+\left(c+d\right)^2-2\left|\left(a+b\right)\left(c+d\right)\right|\)
\(\Leftrightarrow\)\(\left|\left(a+b\right)\left(c+d\right)\right|\ge0\) ( luôn đúng \(\forall\left|a+b\right|\ge\left|c+d\right|\) )
Do đó \(VT\ge\left|a+b\right|-\left|c+d\right|=\left(\sqrt{\left|a+b\right|}\right)^2-\left(\sqrt{\left|c+d\right|}\right)^2\)
\(=\left(\sqrt{\left|a+b\right|}+\sqrt{\left|c+d\right|}\right)\left(\sqrt{\left|a+b\right|}-\sqrt{\left|c+d\right|}\right)\)
\(\ge2\sqrt[4]{\left|a+b\right|.\left|c+d\right|}\left(\sqrt{\left|a+b\right|}-\sqrt{\left|c+d\right|}\right)\)
\(=2\left(\sqrt[4]{\left|a+b\right|^3.\left|c+d\right|}-\sqrt[4]{\left|a+b\right|.\left|c+d\right|^3}\right)\) ( đpcm )
.
Áp dụng bất đẳng thức Mincoxki ta có
\(\sqrt{a^2+c^2}+\sqrt{b^2+d^2}\ge\sqrt{\left(a+b\right)^2+\left(c+d\right)^2}\)
Buniacoxki \(\sqrt{\left(\left(a+b\right)^2+\left(c+d\right)^2\right)\left(1+1\right)}\ge|a+b|+|c+d|\)
Khi đó cần Cm
\(|a+b|+|c+d|\ge2\left(\sqrt{|a+b|^3|c+d|}-\sqrt{|c+d|^3|a+b|}\right)\)
Đặt \(\sqrt[4]{|a+b|}=x,\sqrt[4]{|c+d|}=y\left(x,y\ge0\right)\)
Cần Cm \(x^4+y^4\ge2\left(x^3y-xy^3\right)\left(1\right)\)
<=> \(x^3\left(x-2y\right)+y^4+2xy^3\ge0\left(2\right)\)
+ Nếu \(x\ge2y\)=> BĐT được CM
+ Nếu \(x\le2y\)
(1) <=> \(x^4+y^4+2xy^3\ge2x^3y\)
Mà \(x^4+x^2y^2\ge2x^3y\)
=> Cần CM \(y^4+2xy^3-x^2y^2\ge0\)
<=> \(y^4+xy^2\left(2y-x\right)\ge0\)luôn đúng do \(x\le2y\)
=> BĐT được CM
Dấu bằng xảy ra khi a=b=c=d=0
1 + 1 = 2
소무ㅗ ㅛㅐㅕ ㅊㅁㅊ ㅠㅜ ㅜㅗㅁ
ㅎ햐햐ㅐㅐ ㅡㅡㅏㅏ ㅍㅍㄷㄷ ㅗㅗㅁ무무 ㅂ벼벼ㅐㅐㅊㅊ ㄱ개개ㅑㅑ ㅗㅗㅕㅕㅗㅗㅕㅕ
1 + 1 = 2
2 + 2 = 4
3 + 3 = 6
1+1=2
2+2=4
3+3=6
tk nha