Cho hình thoi ABCD. Trên tia đối các tia BA, CB, DC, AD lần lượt lấy M, N, P, Q sao cho MB =NC =PD =QA. Chứng minh rằng AC, BD, MP, NQ đồng quy.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi a, a + 1, a + 2 lần lượt là ba số tự nhiên liên tiếp (a ∈ ℕ)
Trong ba số tự nhiên liên tiếp chắc chắn có 1 số chẵn nên tích của chúng chia hết cho 2 (1)
Khi lấy a chia cho 3 thì số dư có thể là 0; 1; 2
*) Khi số dư là 0 thì a ⋮ 3
⇒ a(a + 1)(a + 2) ⋮ 3 (2)
*) Khi số dư là 1, đặt a = 3k+ 1 (k ∈ ℕ)
⇒ a + 2 = 3k + 1 + 2 = 3k + 3 = 3(k + 1) ⋮ 3
⇒ a(a + 1)(a + 2) ⋮ 3 (3)
*) Khi số dư là 2, đặt = 3k + 2 (k ∈ ℕ)
⇒ a + 1 = 3k + 2 + 1 = 3k + 3 = 3(k + 1) ⋮ 3
⇒ a(a + 1)(a + 2) ⋮ 3 (4)
Từ (2), (3), (4) ⇒ a(a + 1)(a + 2) ⋮ 3 (5)
Từ (1) và (5) ⇒ tích của ba số tự nhiên liên tiếp chia hết cho 2 và 3
* Hình bình hành:
- Định nghĩa: là tứ giác có các cạnh đối song song.
- Tính chất:
+ Các cạnh đối bằng nhau;
+ Các góc đối bằng nhau;
+ Hai đường chéo cắt nhau tại trung điểm của mỗi đường.
- Dấu hiệu nhận biết:
+Tứ giác có các cạnh đối bằng nhau là hình bình hành.
+ Tứ giác có một cặp cạnh đối song song và bằng nhau là hình bình hành.
+ Tứ giác có các góc đối bằng nhau là hình bình hành.
+ Tứ giác có hai đường chéo cắt nhau tại trung điểm của mỗi đường là hình bình hành.
* Hình thoi
- Định nghĩa: là tứ giác có bốn cạnh bằng nhau.
- Tính chất:
+ Hai đường chéo vuông góc với nhau;
+ Hai đường chéo là các đường phân giác của các góc trong hình thoi.
- Dấu hiệu nhận biết:
+ Hình bình hành có hai cạnh kề bằng nhau là hình thoi.
+ Hình bình hành có hai đường chéo vuông góc với nhau là hình thoi.
+ Hình bình hành có một đường chéo là đường phân giác của một góc là hình thoi.
* Hình vuông:
- Định nghĩa: là tứ giác có bốn góc vuông và bốn cạnh bằng nhau.
- Tính chất: hai đường chéo bằng nhau, vương góc với nhau, cắt nhau tại trung điểm mỗi đường và là các đường phân giác của các góc của hình vuông.
- Dấu hiệu nhận biết:
+ Hình chữ nhật có hai cạnh kề bằng nhau là hình vuông.
+ Hình chữ nhật có hai đường chéo vuông góc là hình vuông.
+ Hình chữ nhật có một đường chéo là đường phân giác của một góc là hình vuông.
\(\left(2x-3\right)\left(x+3\right)\left(5-x\right)\)
\(=\left(2x^2+6x-3x-9\right)\left(5-x\right)\)
\(=10x^2+30x-15x-45-2x^3-6x^2+3x^2+9x\)
\(=-2x^3+7x^2+24x-45\)
A B C D E M N K
a/
Xét tg ABC có
\(AB\perp AC\) (gt)
\(ME\perp AC\) (gt)
=> ME//AB (cùng vg với AC)
\(\Rightarrow\dfrac{CE}{AE}=\dfrac{CM}{BM}\) (Talet) Mà
CM = BM \(\Rightarrow\dfrac{CE}{AE}=\dfrac{CM}{BM}=1\Rightarrow CE=AE\) => E là trung điểm AC
C/m tương tự ta cũng có D là trung điểm AB
b/
Xét tg ABC có
AD=BD (cmt); AE=CE (cmt) => DE là đường trung bình của tg ABC
=> DE//BC => DE//BM
\(\Rightarrow DE=\dfrac{BC}{2}\)
Ta có
\(BM=CM=\dfrac{BC}{2}\)
=> DE=BM
=> BDEM là hình bình hành (Tứ giác có 1 cặp cạnh đối // và = nhau là hình bình hành)
c/
Từ dữ kiện thứ hai, ta thấy 4 số có cùng số dư khi chia cho 3 nên tổng nhỏ nhất là \(1+7+13+19=40\) (giữ lại đáp án ban đầu nhé)
Từ dữ kiện thứ nhất ta thấy hoặc cả 4 số đều lẻ, hoặc cả 4 số đều chẵn.
Từ dữ kiện thứ 2 ta thấy cả 4 số đều phải chia hết cho 3.
Suy ra tổng nhỏ nhất của 4 số là \(1+7+13+19=40\)
Lời giải:
Vì $x=9$ nên $x-9=0$
Ta có:
$F=(x^{2017}-9x^{2016})-(x^{2016}-9x^{2015})+(x^{2015}-9x^{2014})-....-(x^2-9x)+x-10$
$=x^{2016}(x-9)-x^{2015}(x-9)+x^{2014}(x-9)-....-x(x-9)+x-10$
$=x^{2016}.0-x^{2015}.0+x^{2014}.0-...-x.0+x-10$
$=x-10=9-10=-1$
bn nên ghép cả hình vào cho mn dễ hình dung nha