K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 6

8)

a) \(A=1-\dfrac{x}{1-\dfrac{x}{x+1}}\left(x\ne-1\right)\)

\(=1-\dfrac{x}{\dfrac{x+1-x}{x+1}}=1-\dfrac{x}{\dfrac{1}{x+1}}=1-x\left(x+1\right)=-x^2-x+1\) 

b) \(B=\dfrac{\dfrac{x}{y}+\dfrac{y}{x}}{\dfrac{x-y}{x+y}+\dfrac{x+y}{x-y}}=\dfrac{\dfrac{x^2}{xy}+\dfrac{y^2}{xy}}{\dfrac{\left(x-y\right)^2+\left(x+y\right)^2}{\left(x+y\right)\left(x-y\right)}}\left(x\ne\pm y;x\ne0;y\ne0\right)\)

\(=\dfrac{\dfrac{x^2+y^2}{xy}}{\dfrac{x^2-2xy+y^2+x^2+2xy+y^2}{\left(x+y\right)\left(x-y\right)}}=\dfrac{\dfrac{x^2+y^2}{xy}}{\dfrac{2\left(x^2+y^2\right)}{x^2-y^2}}\)

\(=\dfrac{x^2+y^2}{xy}\cdot\dfrac{x^2-y^2}{2\left(x^2+y^2\right)}=\dfrac{x^2-y^2}{2xy}\)

10:

a: Thời gian dự định là \(\dfrac{60}{x}\left(giờ\right)\)

b: Thời gian đi nửa quãng đường đầu tiên là: \(\dfrac{60}{2}:\left(x+10\right)=\dfrac{30}{x+10}\left(giờ\right)\)

Thời gian đi nửa quãng đường còn lại là:

\(\dfrac{60-30}{x-6}=\dfrac{30}{x-6}\left(giờ\right)\)

c: Ô tô đến B đúng giờ nên ta có: \(\dfrac{30}{x+10}+\dfrac{30}{x-6}=\dfrac{60}{x}\)

=>\(\dfrac{1}{x+10}+\dfrac{1}{x-6}=\dfrac{2}{x}\)

=>\(\dfrac{x-6+x+10}{\left(x+10\right)\left(x-6\right)}=\dfrac{2}{x}\)

=>\(\dfrac{2x+4}{\left(x+10\right)\left(x-6\right)}=\dfrac{2}{x}\)

=>\(\dfrac{x+2}{x^2+4x-60}=\dfrac{1}{x}\)

=>\(x\left(x+2\right)=x^2+4x-60\)

=>\(x^2+2x=x^2+4x-60\)

=>-2x=-60

=>x=30

Vậy: Vận tốc dự định của ô tô là 30km/h

Bài 6:

a: \(A=\dfrac{x-1}{x}-\dfrac{x+1}{x^2-x}+\dfrac{3\left(x-1\right)}{x^2-2x+1}\)

\(=\dfrac{x-1}{x}-\dfrac{x+1}{x\left(x-1\right)}+\dfrac{3}{x-1}\)

\(=\dfrac{\left(x-1\right)\left(x-1\right)-x-1+3x}{\left(x-1\right)\cdot x}\)

\(=\dfrac{x^2-2x+1+2x-1}{x\left(x-1\right)}=\dfrac{x^2}{x\left(x-1\right)}=\dfrac{x}{x-1}\)

b: \(B=\dfrac{x+y}{2\left(x-y\right)}-\dfrac{x-y}{2\left(x+y\right)}+\dfrac{2y^2}{x^2-y^2}\)

\(=\dfrac{\left(x+y\right)^2-\left(x-y\right)^2+4y^2}{2\left(x-y\right)\left(x+y\right)}\)

\(=\dfrac{x^2+2xy+y^2-x^2+2xy-y^2+4y^2}{2\left(x-y\right)\left(x+y\right)}=\dfrac{4y^2+4xy}{2\left(x-y\right)\left(x+y\right)}\)

\(=\dfrac{2y\left(x+y\right)}{2\left(x-y\right)\left(x+y\right)}=\dfrac{y}{x-y}\)

a: Xét tứ giác ABDC có

M là trung điểm chung của AD và BC

=>ABDC là hình bình hành

Hình bình hành ABDC có \(\widehat{BAC}=90^0\)

nên ABDC là hình chữ nhật

b: E đối xứng M qua AC

=>AC là đường trung trực của EM

=>AE=AM; CE=CM

ΔBAC vuông tại A

mà AM là đường trung tuyến

nên AM=CM=MB

AM=CM

AE=AM

CE=CM

Do đó: AM=MC=CE=AE

=>AMCE là hình thoi

c: AMCE là hình thoi

=>AE//CM

=>AE//BM

Xét tứ giác ABME có

AE//BM

AE=BM

Do đó: ABME là hình bình hành

=>AM cắt BE tại trung điểm của mỗi đường

mà I là trung điểm của AM

nên I là trung điểm của BE

=>B,I,E thẳng hàng

a: \(\left\{{}\begin{matrix}1,7x-2y=3,8\\2,1x+5y=0,4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}8,5x-10y=19\\4,2x+10y=0,8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}12,7x=19,8\\1,7x-2y=3,8\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{198}{127}\\2y=1,7x-3,8=-\dfrac{146}{127}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{198}{127}\\y=-\dfrac{73}{127}\end{matrix}\right.\)

b: \(\left\{{}\begin{matrix}\left(\sqrt{5}+2\right)x+y=3-\sqrt{5}\\-x+2y=6-2\sqrt{5}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left(2\sqrt{5}+4\right)x+2y=6-2\sqrt{5}\\-x+2y=6-2\sqrt{5}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x\left(2\sqrt{5}+4+1\right)=0\\2y=x+6-2\sqrt{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\2y=6-2\sqrt{5}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=0\\y=3-\sqrt{5}\end{matrix}\right.\)

DT
6 tháng 6

Gọi vận tốc trung bình ở lượt đi của nhóm bạn là: x (km/giờ) (ĐK:x>4)

=> vận tốc trung bình ở lượt về của nhóm bạn là: x-4 (km/giờ)

Thời gian lúc đi từ A đến B là: 24/x (giờ)

Thời gian lúc về từ B về A là: 24/x-4 (giờ)

Theo đề: Thời gian về lâu hơn thời gian đi 1 giờ nên ta có pt:

\(\dfrac{24}{x-4}-\dfrac{24}{x}=1\\ \Leftrightarrow\dfrac{24x-24\left(x-4\right)}{x\left(x-4\right)}=1\\ \Leftrightarrow24x-24x+96=x\left(x-4\right)\\ \Leftrightarrow x^2-4x=96\\ \Leftrightarrow x^2-4x-96=0\\ \Leftrightarrow\left(x-12\right)\left(x+8\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-12=0\\x+8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=12\left(nhận\right)\\x=-8\left(loại\right)\end{matrix}\right.\)

Vậy vận tốc tb ở lượt đi là: 12km/h

 

6 tháng 6

Đáp án: 12km/h

 

Giải thích các bước giải:

 
gọi x là tốc độ trung bình bàn đầu (km/h)
-> tốc độ trung bình lúc sau: x-4 (km/h)

vì thời gian xe đi từ B về A chậm hơn 1 giờ nên ta có phương trình:

 24/x-4  -  24/x = 1
( bạn tự tính giúp mình, mình bấm máy thôi)
-> x= 12
-> tốc độ tb ban đầu là 12 km/h

Cho tui ticks ikkkkkkkkkkkkkkkkk
DT
6 tháng 6

\(\log_2\left(3x\right)>\log_25\\ \Leftrightarrow3x>5\left(Vì:2>1\right)\\ \Leftrightarrow x>\dfrac{5}{3}\)

Vậy tập nghiệm BPT là: \(S=\left\{x|x>\dfrac{5}{3}\right\}\)

DT
6 tháng 6

f(1)=4.1+1

=4+1=5

(B)

F(1) = 4,1 + 1

= 4 + 1 

= 5

Chọn câu B bạn nhé

1: Xét ΔEBA vuông tại B và ΔEDF vuông tại D có

\(\widehat{BEA}\) chung

Do đó: ΔEBA~ΔEDF

2: Xét ΔIDA vuông tại D và ΔIBF vuông tại B có

\(\widehat{DIA}=\widehat{BIF}\)(hai góc đối đỉnh)

Do đó: ΔIDA~ΔIBF

=>\(\dfrac{ID}{IB}=\dfrac{IA}{IF}\)

=>\(ID\cdot IF=IA\cdot IB\)

1: 7-(x-3)=2(3-4x)

=>7-x+3=6-8x

=>-x+10=6-8x

=>-x+8x=6-10

=>7x=-4

=>\(x=-\dfrac{4}{7}\)

2: ĐKXĐ: \(x\notin\left\{1;3\right\}\)

\(\dfrac{3x}{x-1}=\dfrac{2x}{x-3}-\dfrac{4x}{\left(x-1\right)\left(x-3\right)}\)

=>\(\dfrac{3x\left(x-3\right)}{\left(x-1\right)\left(x-3\right)}=\dfrac{2x\left(x-1\right)}{\left(x-3\right)\left(x-1\right)}-\dfrac{4x}{\left(x-1\right)\left(x-3\right)}\)

=>\(3x^2-9x=2x^2-2x-4x\)

=>\(3x^2-9x=2x^2-6x\)

=>\(x^2-3x=0\)

=>x(x-3)=0

=>\(\left[{}\begin{matrix}x=0\left(nhận\right)\\x=3\left(loại\right)\end{matrix}\right.\)

3: \(2\left(3x+1\right)-3\left(5x+2\right)>2x-9\)

=>6x+2-15x-6>2x-9

=>-9x-4>2x-9

=>-11x>-5

=>\(x< \dfrac{5}{11}\)

1: |2x-1|=3

=>\(\left[{}\begin{matrix}2x-1=3\\2x-1=-3\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}2x=4\\2x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\left(loại\right)\\x=-1\left(nhận\right)\end{matrix}\right.\)

Thay x=-1 vào A, ta được:

\(A=\dfrac{-1-1}{\left(-1\right)^2-4}=\dfrac{-2}{1-4}=\dfrac{-2}{-3}=\dfrac{2}{3}\)

2: \(B=\dfrac{x-3}{x-2}-\dfrac{3}{x+2}-\dfrac{4x+5}{4-x^2}\)

\(=\dfrac{x-3}{x-2}-\dfrac{3}{x+2}+\dfrac{4x+5}{\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{\left(x-3\right)\left(x+2\right)-3\left(x-2\right)+4x+5}{\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{x^2-x-6-3x+6+4x+5}{\left(x-2\right)\left(x+2\right)}=\dfrac{x^2+5}{x^2-4}\)

3: \(\dfrac{A}{B}< 0\)

=>\(\dfrac{x-1}{x^2-4}:\dfrac{x^2+5}{x^2-4}< 0\)

=>\(\dfrac{x-1}{x^2+5}< 0\)

=>x-1<0

=>x<1

Kết hợp ĐKXĐ, ta được:

\(\left\{{}\begin{matrix}x< 1\\x\ne-2\end{matrix}\right.\)