Giúp mình với mọi người ai làm đc câu nào thì làm :)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: \(\left(-12,5\right)+17,55+\left(-3,5\right)-\left(-2,45\right)\)
\(=\left(-12,5-3,5\right)+17,55+2,45\)
=-16+20
=4
2: \(\dfrac{-3}{5}\cdot\dfrac{2}{7}+2\dfrac{3}{5}-\dfrac{3}{5}\cdot\dfrac{5}{7}\)
\(=-\dfrac{3}{5}\left(\dfrac{2}{7}+\dfrac{5}{7}\right)+\dfrac{13}{5}\)
\(=-\dfrac{3}{5}+\dfrac{13}{5}=\dfrac{10}{5}=2\)
3: \(\dfrac{2}{3}:x=2,4-\dfrac{4}{5}\)
=>\(\dfrac{2}{3}:x=2,4-0,8=1,6\)
=>\(x=\dfrac{2}{3}:1,6=\dfrac{2}{4,8}=\dfrac{1}{2,4}=\dfrac{5}{12}\)
\(\dfrac{-5}{6}\cdot\dfrac{14}{19}+\dfrac{-9}{12}\cdot\dfrac{14}{19}-\dfrac{5}{18}\)
\(=\dfrac{14}{19}\left(-\dfrac{5}{6}-\dfrac{9}{12}\right)-\dfrac{5}{18}\)
\(=\dfrac{14}{19}\cdot\dfrac{-10-9}{12}-\dfrac{5}{18}\)
\(=\dfrac{14}{19}\cdot\dfrac{-19}{12}-\dfrac{5}{18}=\dfrac{-7}{6}-\dfrac{5}{18}\)
\(=\dfrac{-26}{18}=-\dfrac{13}{9}\)
\(S=3+\dfrac{3}{5}+\dfrac{3}{5^2}+...+\dfrac{3}{5^9}\)
=>\(5S=15+3+\dfrac{3}{5}+...+\dfrac{3}{5^8}\)
=>\(5S-S=15+3+...+\dfrac{3}{5^8}-3-\dfrac{3}{5}-...-\dfrac{3}{5^9}\)
=>\(4S=15-\dfrac{3}{5^9}=\dfrac{15\cdot5^9-3}{5^9}\)
=>\(S=\dfrac{15\cdot5^9-3}{4\cdot5^9}\)
\(C=1+\dfrac{1}{2}+...+\dfrac{1}{2^{100}}\)
=>\(2C=2+1+\dfrac{1}{2}+...+\dfrac{1}{2^{99}}\)
=>\(2C-C=2+1+\dfrac{1}{2}+...+\dfrac{1}{2^{99}}-1-\dfrac{1}{2}-...-\dfrac{1}{2^{100}}\)
=>\(C=2-\dfrac{1}{2^{100}}=\dfrac{2^{101}-1}{2^{100}}\)
\(\dfrac{1}{2}\cdot\dfrac{2}{6}\cdot\dfrac{3}{8}\cdot...\cdot\dfrac{30}{62}\cdot\dfrac{31}{64}=\dfrac{1}{2^x}\)
=>\(\dfrac{2}{2}\cdot\dfrac{3}{6}\cdot\dfrac{4}{8}\cdot...\cdot\dfrac{30}{60}\cdot\dfrac{31}{62}\cdot\dfrac{1}{64}=\dfrac{1}{2^x}\)
=>\(\dfrac{1}{2}\cdot\dfrac{1}{2}\cdot...\cdot\dfrac{1}{2}\cdot\dfrac{1}{64}=\dfrac{1}{2^x}\)
=>\(\dfrac{1}{2^{29}}\cdot\dfrac{1}{2^6}=\dfrac{1}{2^x}\)
=>x=29+6=35
a: \(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}\)
\(=1-\dfrac{1}{6}=\dfrac{5}{6}\)
b: \(\dfrac{1}{2}+\dfrac{1}{6}+...+\dfrac{1}{10100}\)
\(=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{100\cdot101}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{100}-\dfrac{1}{101}\)
\(=1-\dfrac{1}{101}=\dfrac{100}{101}\)
c: \(A=\dfrac{1}{1\cdot3}+\dfrac{1}{3\cdot5}+...+\dfrac{1}{99\cdot101}\)
\(=\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{99\cdot101}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{101}\right)=\dfrac{1}{2}\cdot\dfrac{100}{101}=\dfrac{50}{101}\)
d: \(A=\dfrac{3}{10}+\dfrac{3}{40}+...+\dfrac{3}{340}\)
\(=\dfrac{3}{2\cdot5}+\dfrac{3}{5\cdot8}+...+\dfrac{3}{17\cdot20}\)
\(=\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+...+\dfrac{1}{17}-\dfrac{1}{20}\)
\(=\dfrac{1}{2}-\dfrac{1}{20}=\dfrac{9}{20}\)
Bài 10:
Số học sinh giỏi ngoại ngữ chiếm:
\(\dfrac{1}{3}:\dfrac{4}{5}=\dfrac{1}{3}\cdot\dfrac{5}{4}=\dfrac{5}{12}\)(tổng số học sinh)
Số học sinh giỏi Văn là:
\(1-\dfrac{1}{3}-\dfrac{5}{12}=\dfrac{12-4-5}{12}=\dfrac{3}{12}=\dfrac{1}{4}\)(tổng số học sinh)
Tổng số học sinh là: \(6:\dfrac{1}{4}=24\left(bạn\right)\)
Số học sinh giỏi toán là \(24\cdot\dfrac{1}{3}=8\left(bạn\right)\)
Số học sinh giỏi ngoại ngữ là 24-8-6=10(bạn)
Bài 11:
a: Để A là phân số thì \(x+2\ne0\)
=>\(x\ne-2\)
b: Để A là số nguyên thì \(2x-1⋮x+2\)
=>\(2x+4-5⋮x+2\)
=>\(-5⋮x+2\)
=>\(x+2\in\left\{1;-1;5;-5\right\}\)
=>\(x\in\left\{-1;-3;3;-7\right\}\)
\(A=\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+\dots+\dfrac{2}{99\cdot101}\)
\(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dots+\dfrac{1}{99}-\dfrac{1}{101}\)
\(=1-\dfrac{1}{101}=\dfrac{100}{101}\)
9: \(A=\dfrac{3^2}{10}+\dfrac{3^2}{40}+...+\dfrac{3^2}{340}\)
\(=3\left(\dfrac{3}{10}+\dfrac{3}{40}+...+\dfrac{3}{340}\right)\)
\(=3\left(\dfrac{3}{2\cdot5}+\dfrac{3}{5\cdot8}+...+\dfrac{3}{17\cdot20}\right)\)
\(=3\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+...+\dfrac{1}{17}-\dfrac{1}{20}\right)\)
\(=3\left(\dfrac{1}{2}-\dfrac{1}{20}\right)=3\cdot\dfrac{9}{20}=\dfrac{27}{20}\)
10: \(A=\dfrac{5^2}{1\cdot6}+\dfrac{5^2}{6\cdot11}+...+\dfrac{5^2}{26\cdot31}\)
\(=5\left(\dfrac{5}{1\cdot6}+\dfrac{5}{6\cdot11}+...+\dfrac{5}{26\cdot31}\right)\)
\(=5\left(1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+...+\dfrac{1}{25}-\dfrac{1}{31}\right)\)
\(=5\left(1-\dfrac{1}{31}\right)=5\cdot\dfrac{30}{31}=\dfrac{150}{31}\)
11: \(A=\dfrac{6}{15}+\dfrac{6}{35}+\dfrac{6}{63}+\dfrac{6}{99}\)
\(=3\left(\dfrac{2}{15}+\dfrac{2}{35}+\dfrac{2}{63}+\dfrac{2}{99}\right)\)
\(=3\left(\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+\dfrac{2}{7\cdot9}+\dfrac{2}{9\cdot11}\right)\)
\(=3\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}\right)\)
\(=3\left(\dfrac{1}{3}-\dfrac{1}{11}\right)=3\cdot\dfrac{8}{33}=\dfrac{8}{11}\)
12: \(A=\dfrac{3}{3\cdot5}+\dfrac{3}{5\cdot7}+...+\dfrac{3}{49\cdot51}\)
\(=\dfrac{3}{2}\left(\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{49\cdot51}\right)\)
\(=\dfrac{3}{2}\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{49}-\dfrac{1}{51}\right)\)
\(=\dfrac{3}{2}\left(\dfrac{1}{3}-\dfrac{1}{51}\right)=\dfrac{3}{2}\cdot\dfrac{16}{51}=\dfrac{8}{17}\)
13: \(A=\dfrac{1}{2}+\dfrac{2}{2\cdot4}+\dfrac{3}{4\cdot7}+\dfrac{4}{7\cdot11}+\dfrac{5}{11\cdot16}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{16}\)
\(=1-\dfrac{1}{16}=\dfrac{15}{16}\)
14: \(A=\dfrac{1}{2}+\dfrac{2}{8}+\dfrac{3}{28}+\dfrac{4}{77}+\dfrac{5}{176}\)
\(=\dfrac{1}{1\cdot2}+\dfrac{2}{2\cdot4}+\dfrac{3}{4\cdot7}+\dfrac{4}{7\cdot11}+\dfrac{5}{11\cdot16}\)
15: \(A=\dfrac{3}{54}+\dfrac{5}{126}+\dfrac{7}{294}+\dfrac{8}{609}\)
\(=\dfrac{3}{6\cdot9}+\dfrac{5}{9\cdot14}+\dfrac{7}{14\cdot21}+\dfrac{8}{21\cdot29}\)
\(=\dfrac{1}{6}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{21}+\dfrac{1}{21}-\dfrac{1}{29}\)
\(=\dfrac{1}{6}-\dfrac{1}{29}=\dfrac{23}{174}\)
16: \(A=\dfrac{5}{24}+\dfrac{5}{104}+\dfrac{5}{234}+\dfrac{5}{414}\)
\(=\dfrac{5}{3\cdot8}+\dfrac{5}{8\cdot13}+\dfrac{5}{13\cdot18}+\dfrac{5}{18\cdot23}\)
\(=\dfrac{1}{3}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{18}+\dfrac{1}{18}-\dfrac{1}{23}\)
\(=\dfrac{1}{3}-\dfrac{1}{23}=\dfrac{20}{69}\)
17: \(A=\dfrac{\dfrac{3}{54}+\dfrac{5}{126}+\dfrac{7}{294}}{\dfrac{5}{24}+\dfrac{5}{104}+\dfrac{5}{234}}\)
\(=\dfrac{\dfrac{1}{6}-\dfrac{1}{21}}{\dfrac{1}{3}-\dfrac{1}{18}}=\dfrac{15}{126}:\dfrac{15}{54}=\dfrac{54}{126}=\dfrac{3}{7}\)