K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2017

A B C D H E I

Lấy E đối xứng với D qua AB, ED cắt AB tại I

Vì AD là phân giác \(\widehat{BAC}\)\(\Rightarrow\frac{BD}{CD}=\frac{AB}{AC}< 1\)

\(\Rightarrow BD< CD\)

\(\Rightarrow BC>2BD\)

Vì DI // CH

\(\Rightarrow\frac{DI}{CH}=\frac{BD}{BC}< \frac{1}{2}\)

\(\Rightarrow CH>2DI=DE\left(1\right)\)

Xét \(\Delta ABC\)ta có: \(AB< AC< BC\)

\(\Rightarrow\widehat{ACB}< \widehat{ABC}< \widehat{BAC}\)

\(\Rightarrow2\widehat{BAC}>\widehat{ACB}+\widehat{ABC}\)

\(\Rightarrow\widehat{BAC}>\frac{\widehat{ACB}+\widehat{ABC}}{2}=\frac{180^o-\widehat{BAC}}{2}\)

Xét \(\Delta AED\)ta có:

\(\widehat{AED}=\widehat{ADE}=\frac{180^o-\widehat{EAD}}{2}=\frac{180^o-\widehat{BAC}}{2}< \widehat{BAC}=\widehat{EAD}\)

\(\Rightarrow ED>AE=AD\left(2\right)\)

Từ (1) và (2) \(\Rightarrow CH>AD\)

27 tháng 4 2017

mk mới học lớp 5 nên ko biết, mong bạn thông cảm, chúc bạn học giỏi nha

25 tháng 4 2017

A+B=\(\left(x^2y-xy^2+3x^2\right)+\left(x^2y+xy^2-2x^2-1\right)\)

\(=x^2y-xy^2+3x^2+x^2y+xy^2-2x^2-1\)

\(=\left(x^2y+x^2y\right)-\left(xy^2-xy^2\right)+\left(3x^2-2x^2\right)-1\)

\(=2x^2y+x^2-1\)

25 tháng 4 2017

\(A+B=x^2y-xy^2+3x^2+x^2y+xy^2-2x^2-1\)

              \(=2x^2y+x^2-1\)

22 tháng 2 2018

mk sẽ giúp bn

\(VT=\left(x^2+\frac{1}{x^2}\right)+\left(y^2+\frac{1}{y^2}\right)+\left(z^2+\frac{1}{z^2}\right)\ge2\sqrt{\frac{x^2}{x^2}}+2\sqrt{\frac{y^2}{y^2}}+2\sqrt{\frac{z^2}{z^2}}=2+2+2=6\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=z=1\)

... 

22 tháng 4 2017

Ta có:

\(-20=-20\)

\(\Leftrightarrow25-45=16-36\)

\(\Rightarrow5^2-2.5.9.2=4^2-2.4.9.2\)

Cộng cả hai vế với \(\left(9.2\right)^2\)Để xuất hiện bất đẳng thức.

\(5^2-2.5.9.2+\left(9.2\right)^2=4^2-2.4.9.2+\left(9.2\right)^2\)

\(\Leftrightarrow\left(5-9.2\right)^2=\left(4-9.2\right)^2\)

\(\Rightarrow5-9.2=4-9.2\)

\(\Rightarrow5=4\)

Hoặc \(4=5\)

24 tháng 4 2017

Nhận xét về dãy số. Ta thấy rằng dã số này thì có 2 tính chất cần chú ý.

Thứ 1: Số hạng thứ n là tổng của n số lẻ liên tiếp.

Thứ 2: Số bé nhất trong n số của số hạng n sẽ có dạng: \(2k+1\)(với k là tổng số chữ số của (n - 1) số hạn trước đó:

(Ví dụ: Số hạng thứ 5 trong dãy sẽ có \(k=1+2+3+4=10\)sợ you không hiểu chỗ này nên cho ví dụ đấy)

Giờ ta chứng minh với n bất kỳ thì dãy này luôn đúng yêu cầu bài toán:

Xét số thứ n trong dãy:

Ta có \(k=1+2+...+\left(n-1\right)=\frac{n\left(n-1\right)}{2}\)

Số hạng thứ n của dãy sẽ là: \(\left(2k+1\right)+\left(2k+3\right)+...+\left(2k+1+2\left(n-1\right)\right)\)

\(=2kn+\left(1+3+...+\left(2n-1\right)\right)\)

\(=2kn+n^2\)

\(=2.\frac{n\left(n-1\right)}{2}.n+n^2=n^2\left(n-1+1\right)=n^3\)

Vậy bài toán đã được chứng minh.

24 tháng 4 2017

Chứng minh chia hết cho 2:

Ta có: \(3^{2^{4n+1}}\) là số lẻ và \(5\)là số lẻ nên

\(\Rightarrow\left(3^{2^{4n+1}}+2^{3^{4n+1}}+5\right)⋮2\left(1\right)\)

Chứng minh chia hết cho 11: (dùng \(\exists\)làm ký hiệu đồng dư)

Theo Fecma vì 11 là số nguyên tố nên

\(\Rightarrow3^{11-1}=3^{10}\exists1\left(mod11\right)\left(2\right)\)

Ta lại có: \(2^{4n+1}=2.16^n\exists2\left(mod10\right)\)

\(\Rightarrow2^{4n+1}=10k+2\)

Kết hợp với (2) ta được

\(\Rightarrow3^{4n+1}=3^{10k+2}=9.3^{10k}\exists9\left(mod11\right)\left(3\right)\)

Tương tự ta có:

\(\Rightarrow2^{11-1}=2^{10}\exists1\left(mod11\right)\left(4\right)\)

Ta lại có: 

\(3^{4n+1}=3.81^n\exists3\left(mod10\right)\)

\(\Rightarrow3^{4n+1}=10l+3\)

Kết hợp với (4) ta được

\(2^{3^{4n+1}}=2^{10l+3}=8.2^{10l}\exists8\left(mol11\right)\left(5\right)\)

Từ (3) và (5) \(\Rightarrow\left(3^{2^{4n+1}}+2^{3^{4n+1}}+5\right)\exists\left(9+8+5\right)\exists22\exists0\left(mod11\right)\)

\(\Rightarrow\left(3^{2^{4n+1}}+2^{3^{4n+1}}+5\right)⋮11\left(6\right)\)

Từ (1) và (6) \(\Rightarrow\left(3^{2^{4n+1}}+2^{3^{4n+1}}+5\right)⋮\left(2.11\right)=22\)

21 tháng 4 2017

Gọi 6 số đã cho là a, b, c, d, e, f.

Ta chứng minh cả 6 số đều lớn hơn 1. Không mất tính tổng quát, giả sử a < 1.

Vì tổng của a với 4 trong 5 số còn lại lớn hơn 9 nên tổng của 4 số này > 8. (1)

Ta có b + c + d + e + f < 10, vì c + d + e + f  > 8 (do (1)) nên b < 2. Tương tự c, d, e, f < 2.

Do đó c + d + e + f < 8 trái với (1). Suy ra điều giả sử sai hay tất cả các số đã cho đều lớn hơn 1.

Vậy tích của 6 số đó luôn lớn hơn 1. (đpcm)

21 tháng 4 2017

hông biết

2 tháng 8 2017

Hỏi toán lớp 4 :1,2,3,4,5,8,..