Cho 5 số thực không nhất thiết phân biệt có tổng là 18.Tổng của 3 số bất kì trong 5 số đó không âm.
Tìm GTNN của số nhỏ nhất trong 5 số đó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Không mất tính tổng quát ta giả sử: \(\hept{\begin{cases}a\ge b\ge1\\c\ge d\ge1\end{cases}}\)
Theo đề bài thì \(\hept{\begin{cases}a+b=cd\\ab=c+d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a+b\ge c\\ab\le2c\end{cases}}\)
\(\Rightarrow a+b\ge c\ge\frac{ab}{2}\)
\(\Rightarrow ab\le2\left(a+b\right)\le4a\)
\(\Rightarrow1\le b\le4\)
Tương tự ta cũng tìm được
\(1\le d\le4\)
Kết hợp lại rồi lập bảng chọn ra giá trị thỏa mãn là xong.
Giả sử ta đang cần tìm căn bậc hai của x
Bước 0: Chọn một số mà bạn “nghĩ” là căn bậc hai của x. Gọi nó là g
Bước 1: Tính \(g^2\) . Nếu \(x=g^2\) thì g là số thỏa mãn. Bài toán được giải
Bước 2: Tính \(\frac{1}{2}\left(g+\frac{x}{g}\right)\) Gán nó vào g . Quay lại bước 1
Ta có
\(f\left(x\right)=\frac{1}{6}x^3-\frac{1}{6}x\)
\(f\left(x\right)=\frac{1}{6}x\left(x^2-1\right)\)
Ta sẽ chứng minh x(x2-1) luôn chia hết cho 6
Thật vậy, ta có x(x2-1)=x(x-1)(x+1)
Ta có x(x-1)(x+1) luôn chẵn vì nếu x chẵn thì tất nhiên là chẵn. Nếu x lẻ thì x-1 và x+1 chia hết cho 2 => Tích chẵn
Với x=3k => Tích chia hết cho 3
Với x=3k+1 =>x-1 chia hết cho 3 => tích chia hết cho 3
Với x=3k+2 =>x+1 chia hết cho 3 => Tích chia hết cho 3
Vậy tích luôn chia hết cho 3
Ta có tích chia hết cho 2 và 3, mà (2,3)=1 =>Tích chia hết cho 6
=> x(x2-1) luôn chia hết cho 6
Vậy f(x) luôn là số nguyên
Ta có
ƒ x =
6
1 x
3 −
6
1 x
ƒ x =
6
1 x x
2 − 1
Ta sẽ chứng minh x(x2
-1) luôn chia hết cho 6
Thật vậy, ta có x(x2
-1)=x(x-1)(x+1)
Ta có x(x-1)(x+1) luôn chẵn vì nếu x chẵn thì tất nhiên là chẵn. Nếu x lẻ thì x-1 và x+1 chia hết cho 2 => Tích chẵn
Với x=3k => Tích chia hết cho 3
Với x=3k+1 =>x-1 chia hết cho 3 => tích chia hết cho 3
Với x=3k+2 =>x+1 chia hết cho 3 => Tích chia hết cho 3
Vậy tích luôn chia hết cho 3
Ta có tích chia hết cho 2 và 3, mà (2,3)=1 =>Tích chia hết cho 6
=> x(x2
-1) luôn chia hết cho 6
Vậy f(x) luôn là số nguyên
A B C D H E I
Lấy E đối xứng với D qua AB, ED cắt AB tại I
Vì AD là phân giác \(\widehat{BAC}\)\(\Rightarrow\frac{BD}{CD}=\frac{AB}{AC}< 1\)
\(\Rightarrow BD< CD\)
\(\Rightarrow BC>2BD\)
Vì DI // CH
\(\Rightarrow\frac{DI}{CH}=\frac{BD}{BC}< \frac{1}{2}\)
\(\Rightarrow CH>2DI=DE\left(1\right)\)
Xét \(\Delta ABC\)ta có: \(AB< AC< BC\)
\(\Rightarrow\widehat{ACB}< \widehat{ABC}< \widehat{BAC}\)
\(\Rightarrow2\widehat{BAC}>\widehat{ACB}+\widehat{ABC}\)
\(\Rightarrow\widehat{BAC}>\frac{\widehat{ACB}+\widehat{ABC}}{2}=\frac{180^o-\widehat{BAC}}{2}\)
Xét \(\Delta AED\)ta có:
\(\widehat{AED}=\widehat{ADE}=\frac{180^o-\widehat{EAD}}{2}=\frac{180^o-\widehat{BAC}}{2}< \widehat{BAC}=\widehat{EAD}\)
\(\Rightarrow ED>AE=AD\left(2\right)\)
Từ (1) và (2) \(\Rightarrow CH>AD\)
mk mới học lớp 5 nên ko biết, mong bạn thông cảm, chúc bạn học giỏi nha
A+B=\(\left(x^2y-xy^2+3x^2\right)+\left(x^2y+xy^2-2x^2-1\right)\)
\(=x^2y-xy^2+3x^2+x^2y+xy^2-2x^2-1\)
\(=\left(x^2y+x^2y\right)-\left(xy^2-xy^2\right)+\left(3x^2-2x^2\right)-1\)
\(=2x^2y+x^2-1\)
\(VT=\left(x^2+\frac{1}{x^2}\right)+\left(y^2+\frac{1}{y^2}\right)+\left(z^2+\frac{1}{z^2}\right)\ge2\sqrt{\frac{x^2}{x^2}}+2\sqrt{\frac{y^2}{y^2}}+2\sqrt{\frac{z^2}{z^2}}=2+2+2=6\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=z=1\)
...
Ta có:
\(-20=-20\)
\(\Leftrightarrow25-45=16-36\)
\(\Rightarrow5^2-2.5.9.2=4^2-2.4.9.2\)
Cộng cả hai vế với \(\left(9.2\right)^2\)Để xuất hiện bất đẳng thức.
\(5^2-2.5.9.2+\left(9.2\right)^2=4^2-2.4.9.2+\left(9.2\right)^2\)
\(\Leftrightarrow\left(5-9.2\right)^2=\left(4-9.2\right)^2\)
\(\Rightarrow5-9.2=4-9.2\)
\(\Rightarrow5=4\)
Hoặc \(4=5\)
Nhận xét về dãy số. Ta thấy rằng dã số này thì có 2 tính chất cần chú ý.
Thứ 1: Số hạng thứ n là tổng của n số lẻ liên tiếp.
Thứ 2: Số bé nhất trong n số của số hạng n sẽ có dạng: \(2k+1\)(với k là tổng số chữ số của (n - 1) số hạn trước đó:
(Ví dụ: Số hạng thứ 5 trong dãy sẽ có \(k=1+2+3+4=10\)sợ you không hiểu chỗ này nên cho ví dụ đấy)
Giờ ta chứng minh với n bất kỳ thì dãy này luôn đúng yêu cầu bài toán:
Xét số thứ n trong dãy:
Ta có \(k=1+2+...+\left(n-1\right)=\frac{n\left(n-1\right)}{2}\)
Số hạng thứ n của dãy sẽ là: \(\left(2k+1\right)+\left(2k+3\right)+...+\left(2k+1+2\left(n-1\right)\right)\)
\(=2kn+\left(1+3+...+\left(2n-1\right)\right)\)
\(=2kn+n^2\)
\(=2.\frac{n\left(n-1\right)}{2}.n+n^2=n^2\left(n-1+1\right)=n^3\)
Vậy bài toán đã được chứng minh.
Gọi 5 số đó là: a,b,c,d,e.
Vì tổng của 3 số bất kì trong 5 số đó không âm nên trong 5 số có tối đa 2 số âm.
Ta xét 3 trường hợp.
TH 1 tất cả đều không âm
\(\Rightarrow\)Số bé nhất là 0.
TH 2: Có 1 số âm. Giả sử \(a\ge b\ge c\ge d\ge0>e\)
Ta có: (a + b);(a + c); (a + d); (b + c); (b + d); (c + d) \(\ge\)- e
Theo đề bài thì
a + b + c + d + e = 18
\(\Leftrightarrow3\left(a+b+c+d\right)=54-3e\)
\(\Leftrightarrow54-3e=\left(a+b\right)+\left(a+c\right)+\left(a+d\right)+\left(b+c\right)+\left(b+d\right)+\left(d+e\right)\ge-6e\)
\(\Leftrightarrow54\ge-3e\)
\(\Leftrightarrow e\ge-18\)
\(\Rightarrow\)Số bé nhất là - 18.
TH 3: có 2 số âm. Làm tương tự
Sa đó chọn số bé nhất trong 3 trường hợp là số cần tìm.
TH 3: Có 2 số âm. Giả sử \(a\ge b\ge c\ge0>d\ge e>d+e\)
Vì tổng 3 số không âm nên ta có
a,b,c \(\ge\)- (d + e)
Theo đề bài thì
a + b + c + d + e = 18
\(\Leftrightarrow\)a + b + c = 18 - (d + e)
\(\Leftrightarrow\)18 - (d + e) \(\ge\)- 3(d + e)
\(\Leftrightarrow\)18 \(\ge\)- 2(d + e)
\(\Leftrightarrow\)(d + e) \(\ge\)- 9
\(\Rightarrow\)e > - 9
Kết hợp 3 trường hợp thì chọn số nhỏ nhất là - 18