Cho tam giác ABC cân tại A. Vẽ AD là phân giác góc BAC (D thuộc BC).
a)Chứng minh tam giác ABD= tam giác ACD
b)Chứng minh AD là trung trực của BC
c) Vẽ DM vuông góc với AB tại M.Trên cạnh AC lấy N sao cho AN=AM. Chứng minh tam giác ADM= tam giác ADN
a) Do AD là tia phân giác của ∠BAC (gt)
⇒ ∠BAD = ∠CAD
Do ∆ABC cân tại A (gt)
⇒ AB = AC
Xét ∆ABD và ∆ACD có:
AB = AC (cmt)
∠BAD = ∠CAD (cmt)
AD là cạnh chung
⇒ ∆ABD = ∆ACD (c-g-c)
b) Do ∆ABD = ∆ACD (cmt)
⇒ ∠ADB = ∠ADC (hai góc tương ứng)
Mà ∠ADB + ∠ADC = 180⁰ (kề bù)
⇒ ∠ADB = ∠ADC = 180⁰ : 2 = 90⁰
⇒ AD ⊥ BC (1)
Do ∆ABD = ∆ACD (cmt)
⇒ BD = CD (hai cạnh tương ứng)
⇒ D là trung điểm của BC (2)
Từ (1) và (2) ⇒ AD là đường trung trực của BC
c) Do ∠BAD = ∠CAD (cmt)
⇒ ∠MAD = ∠NAD
Xét ∆ADM và ∆ADN có:
AD là cạnh chung
∠MAD = ∠NAD (cmt)
AM = AN (gt)
⇒ ∆ADM = ∆ADN (c-g-c)