CMR:
\(\dfrac{2x+3}{3x+2}+\dfrac{A+B+1}{1}\)nhận giá trị nguyên
biết:
\(A=4^0+4^1+4^2+4^3+...+4^{\infty}\)
\(B=-4^0+\left(-4^1\right)+\left(-4^2\right)+\left(-4^3\right)+...+\left(-4^{\infty}\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu bác tám bó thành từng bó gồm 4 bông, 6 bông thì vừa hết chứ em nhỉ?
Vì bác tám bó thành bó 5 bông thì thừa 3 bông, bó thành bó 4 bông, 6 bông thì vừa hết nên nếu có thêm 12 bông thì số hoa chia hết cho cả 4; 5; 6
Gọi số hoa của bác tám là \(x\) (bông) \(x\) > 0; \(x\) \(\in\) N
⇒ \(x\) + 12 \(⋮\) 4; 5; 6
4 = 22; 5 = 5; 6 = 2.3. BCNN(4; 5; 6) = 60
⇒ \(x\) + 12 \(\in\) BCNN(4;5; 6) = 60
\(x\) + 12 \(\in\) {0; 60; 120; 180;...;}
⇒ \(x\) \(\in\) {-12; 48; 108;...;}
Vì 0 < \(x\) < 60 nên \(x\) = 48
Kết luận bác Tám có 48 bông hồng.
x thuộc tập hình dưới đây, bạn ghi nhỏ cạnh chữ thuộc nhá
Ba số tự nhiên liên tiếp có dạng: n; n+1; n + 2 (n \(\in\) N)
Ta cần chứng minh: n(n +1)(n+2) ⋮ 3
nếu n ⋮ 3 ⇒ n(n +1).(n +2) ⋮ 3 (đpcm)
Nếu n = 3k + 1 ⇒ n + 2 = 3k + 1 + 2 = 3k + 3 ⋮ 3
⇒n(n+1).(n+2) ⋮ 3 (đpcm)
Nếu n = 3k + 2 ⇒ n + 1 = 3k + 2 + 1 = 3k + 3 ⋮ 3
⇒ n.(n + 1).(n +2) ⋮ 3 (đpcm)
A = (\(\dfrac{1}{2}\) + 1).(\(\dfrac{1}{3}\) + 1).(\(\dfrac{1}{4}\) + 1)...(\(\dfrac{1}{99}\) + 1)
A = \(\dfrac{1+2}{2}\).\(\dfrac{1+3}{3}\).\(\dfrac{1+4}{4}\)...\(\dfrac{1+99}{99}\)
A = \(\dfrac{3}{2}\).\(\dfrac{4}{3}\).\(\dfrac{5}{4}\)....\(\dfrac{100}{99}\)
A = \(\dfrac{100}{2}\) \(\times\) \(\dfrac{3.4.5...99}{3.4.5...99}\)
A = 50