Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3 :
a, Với \(x\ge0;x\ne1\)
\(P=\frac{3x-\sqrt{x}-8}{x+\sqrt{x}-2}-\frac{\sqrt{x}-2}{\sqrt{x}-1}+\frac{2}{\sqrt{x}+2}\)
\(=\frac{3x-\sqrt{x}-8-\left(x-4\right)+2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{3x-\sqrt{x}-8-x+4+2\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}=\frac{2x+\sqrt{x}-6}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}=\frac{2\sqrt{x}-3}{\sqrt{x}-1}\)
b, Ta có : \(x=\frac{4}{\sqrt{7}+\sqrt{5}}+\frac{6}{2-\sqrt{7}}+10=\frac{4\left(\sqrt{7}-\sqrt{5}\right)}{2}+\frac{6\left(2+\sqrt{7}\right)}{-3}+10\)
\(=2\sqrt{7}-2\sqrt{5}-4-2\sqrt{7}+10=-2\sqrt{5}+6\)
\(\Rightarrow\sqrt{x}=\sqrt{6-2\sqrt{5}}=\sqrt{\left(\sqrt{5}-1\right)^2}=\sqrt{5}-1\)
Thay vào P ta được : \(\frac{2\left(\sqrt{5}-1\right)-3}{\sqrt{5}-1-1}=\frac{2\sqrt{5}-5}{\sqrt{5}-2}=-\sqrt{5}\)
c, Ta có : \(\frac{2\sqrt{x}-3}{\sqrt{x}-1}\le1\Leftrightarrow\frac{2\sqrt{x}-3}{\sqrt{x}-1}-1\le0\)
\(\Leftrightarrow\frac{2\sqrt{x}-3-\sqrt{x}+1}{\sqrt{x}-1}\le0\Leftrightarrow\frac{\sqrt{x}-2}{\sqrt{x}-1}\le0\)
Vì \(\sqrt{x}-1>\sqrt{x}-2\)
\(\hept{\begin{cases}\sqrt{x}-2\le0\\\sqrt{x}-1\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le4\\x\ge1\end{cases}}\Leftrightarrow1\le x\le4\)
Kết hợp với đk vậy \(1< x\le4\)
d, Ta có : \(\frac{2\sqrt{x}-3}{\sqrt{x}-1}-\frac{3}{2}\le0\Leftrightarrow\frac{4\sqrt{x}-6-3\sqrt{x}+3}{2\left(\sqrt{x}-1\right)}\le0\)
\(\Leftrightarrow\frac{\sqrt{x}-3}{2\left(\sqrt{x}-1\right)}\le0\) TH1 : \(\hept{\begin{cases}\sqrt{x}-3\le0\\\sqrt{x}-1\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le9\\x\ge1\end{cases}}\Leftrightarrow1< x\le9\)
TH1 : \(\hept{\begin{cases}\sqrt{x}-3\ge0\\\sqrt{x}-1\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge9\\0\le x< 1\end{cases}}\)( vô lí )
Ta có : \(\Delta=\left(-2m\right)^2-4\left(-2m-1\right)=4m^2+8m+4\)
Để pt có 2 nghiệm phân biệt khi \(\Delta>0\)
\(\Delta=4m^2+8m+4=4\left(m^2+2m+1\right)=4\left(m+1\right)^2>0\Rightarrow m+1>0\Leftrightarrow m>-1\)
Theo Vi et : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=2m\\x_1x_2=\frac{c}{a}=-2m-1\end{cases}}\)
Thay vào ta được : \(\sqrt{2m}+\sqrt{3+\left(-2m-1\right)}=2m+1\)
\(\Leftrightarrow\sqrt{2m}+\sqrt{-2m+2}=2m+1\)
\(\Leftrightarrow2m+2\sqrt{-4m^2+4m}-2m+2=4m^2+4m+1\)
\(\Leftrightarrow2\sqrt{-4m^2+4m}+2=4m^2+4m+1\)
\(\Leftrightarrow2\sqrt{-4m^2+4m}=4m^2+4m-1\)
bạn bình phương tìm m so sánh với đk nhé ;))
\(Q=\frac{2017}{x-8\sqrt{x}+2018}=\frac{2017}{\left(\sqrt{x}-4\right)^2+2002}\)
ta có \(\left(\sqrt{x}-4\right)^2\ge0\)
\(Q\le\frac{2017}{2002}\)
dấu "=" xảy ra khi \(x=16\)
\(MAX:Q=\frac{2017}{2002}\)
=> 6ab = 36 - (a - b)2 ≤≤ 36 + 0 => ab ≤≤ 36/6 = 6
=> GTLN của x = ab là 6
Dấu '=' xảy ra khi a = b = √66 hoặc a = b = - √6
ko đúng thì xl
Trả lời
=> 6ab = 36 - ( a - b ) ^2 < 36 + 0 => ab < 36/6
=> GTLN của x = ab là 6
Dấu " = " xảy ra khi a=b = √6hoặc a = b = -√6
HT
a, Với \(x\le\frac{3}{2}\)
\(2\sqrt{3-2x}=\frac{1}{2}\Leftrightarrow\sqrt{3-2x}=\frac{1}{4}\)
\(\Leftrightarrow3-2x=\frac{1}{16}\Leftrightarrow2x=\frac{47}{16}\Leftrightarrow x=\frac{47}{32}\)(tm)
b, Với \(x\ge1\)
\(4-\sqrt{x-1}=\frac{1}{2}\Leftrightarrow\sqrt{x-1}=\frac{7}{2}\Leftrightarrow x-1=\frac{49}{4}\Leftrightarrow x=\frac{53}{4}\)(tm)
c, Với \(x\ge1\)
\(\sqrt{x-1}-3=1\Leftrightarrow\sqrt{x-1}=4\Leftrightarrow x-1=16\Leftrightarrow x=17\)(tm)
d, Với \(x\ge-2\)
\(\frac{1}{2}-2\sqrt{x+2}=\frac{1}{4}\Leftrightarrow2\sqrt{x+2}=\frac{1}{4}\Leftrightarrow\sqrt{x+2}=\frac{1}{8}\)
\(\Leftrightarrow x+2=\frac{1}{64}\Leftrightarrow x=-\frac{127}{64}\)(tm)