Bài 1. (2 điểm) Cho biểu thức $A=\dfrac{{{x}^{2}}}{{{x}^{2}}-4}-\dfrac{x}{x-2}-\dfrac{2}{x+2}.$
a) Viết điều kiện xác định của biểu thức $ A.$
b) Rút gọn biểu thức $A$.
c) Tìm giá trị của $x$ để $A=2.$
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(xy+y^2-x-y\)
\(=\left(xy+y^2\right)-\left(x+y\right)\)
\(=y\left(x+y\right)-\left(x+y\right)\)
\(=\left(y-1\right)\left(x+y\right)\)
b) \(\left(x^2y^2-8\right)^2-1\)
\(=\left(x^2y^2-8\right)^2-1^2\)
\(=\left(x^2y^2-8-1\right)\left(x^2y^2-8+1\right)\)
\(=\left(x^2y^2-9\right)\left(x^2y^2-7\right)\)
\(=\left(xy+3\right)\left(xy-3\right)\left(x^2y^2-7\right)\)
a) Thể tích không khí bên trong chiếc lều:
1/3 . 3² . 2,8 = 8,4 (m³)
b) Diện tích đáy:
3.3 = 9 (m²)
Độ dài cạnh bên của lều:
√(2,8² + 1,5²) ≈ 3,18 (m)
Diện tích vải lều:
9 + 4 . 3 . 3,18 : 2 = 28,08 (m²)
Số tiền mua vải:
28,08 . 15000 - 28,08 . 15000 . 5% = 400140 (đồng)
a) Xét tứ giác ABCD ta có:
\(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\)
\(\Rightarrow\widehat{D}=360^o-102^o-102^o-102^o\)
\(\Rightarrow\widehat{D}=54^o\)
b) Xét tam giác vuông AOD ta có:
\(AD^2=OD^2+OA^2\)
\(\Rightarrow OA=\sqrt{AD^2-OD^2}\)
\(\Rightarrow OA=\sqrt{30^2-26,7^2}\approx13,7\left(cm\right)\)
Xét tam giác vuông AOB ta có:
\(AB^2=OA^2+OB^2\)
\(\Rightarrow OB=\sqrt{AB^2-OA^2}\)
\(\Rightarrow OB=\sqrt{17,5^2-13,7^2}\approx10,9\left(cm\right)\)
Độ dài đường chéo BD là:
\(BD=OB+OD=26,7+10,9\approx37,6\left(cm\right)\)
a) \(\left(-12x^{13}y^{15}+6x^{10}y^{14}\right):\left(-3x^{10}y^{14}\right)\)
\(=-12x^{13}y^{15}:-3x^{10}y^{14}+6x^{10}y^{14}:-3x^{10}y^{14}\)
\(=4x^3y-2\)
b) \(\left(x-y\right)\left(x^2-2x+y\right)-x^3+x^2y\)
\(=x^3-2x^2+xy-x^2y+2xy-y^2-x^3+x^2y\)
\(=-2x^2+3xy-y^2\)
a) \(-12x^{13}\)\(y^{15}\)+\(6x^{10}\)\(y^{14}\):\(-3x^{10}\)\(y^{14}\)
=\(-12x\)\(^{13}\)\(y^{15}\)\(:\)\(-3x^{10}y^{14}\)\(+6x^{10}y^{14}:-3x^{10}y^{14}\)
\(=4x^3y-2\)
b)\(=\left(x-y\right)x^2-2x+y-x^3+x^2y\)
\(=x^3-x^2y-2x+y-x^3+x^2y\)
\(=-2x+y\)
a) \(\left(4x^4-8x^2y^2+12x^5y\right):\left(-4x^2\right)\)
\(=4x^4:-4x^2-8x^2y^2:-4x^2+12x^4y:-4x^2\)
\(=-x^2+2y^2-3x^2y\)
b) \(x^2\left(x-y^2\right)-xy\left(1-xy\right)-x^3\)
\(=x^3-x^2y^2-xy+x^2y^2-x^3\)
\(=-xy\)
a) (5x³y² - 3x²y + xy) : xy
= 5x³y² : xy + (-3x²y : xy) + xy : xy
= 5x²y - 3x + 1
b) A + 2M = P
A = P - 2M
= 3x³ - 2x²y - xy + 3 - 2.(x³ - x²y + 2xy + 3)
= 3x³ - 2x²y - xy + 3 - 2x³ + 2x²y - 4xy - 6
= (3x³ - 2x³) + (-2x²y + 2x²y) + (-xy - 4xy) + (3 - 6)
= x³ - 5xy - 3
Vậy A = x³ - 5xy - 3
a) \(A:xy\)
\(=\left(5x^3y^2-3x^2y+xy\right):xy\)
\(=5x^3y^2:xy-3x^2y:xy+xy:xy\)
\(=5x^2y-3x+1\)
b) \(A+2M=P\)
\(\Rightarrow A+2\cdot\left(x^3-x^2y+2xy\right)=3x^3-2x^2y-xy+3\)
\(\Rightarrow A+2x^3-2x^2y+4xy=3x^3-2x^2y-xy+3\)
\(\Rightarrow A=3x^3-2x^3-2x^2y+2x^2y-xy-4xy+3\)
\(\Rightarrow A=x^3-4xy+3\)
a) 2(3x - 1) = 10
3x - 1 = 10 : 2
3x - 1 = 5
3x = 5 + 1
3x = 6
x = 6 : 3
x = 2
b) (3x + 4)² - (3x - 1)(3x + 1) = 49
9x² + 24x + 16 - 9x² + 1 = 49
24x + 17 = 49
24x = 49 - 17
24x = 32
x = 32 : 24
x = 4/3
a) \(2\left(3x-1\right)=10\)
\(3x-1=5\)
\(3x=6\)
\(x=2\)
b) \(\left(3x+4\right)^2-\left(3x-1\right)\left(3x+1\right)=49\)
\(9x^2+24x+16-9x^2+1=49\)
\(24x=49-1-16=32\)
\(x=\dfrac{32}{24}=\dfrac{4}{3}\)
## Bài giải:
**a) Tứ giác BHCK là hình gì?**
* **Bước 1:** Xét tứ giác BHCK có: $\widehat{BHC} = \widehat{BKC} = 90^\circ$ (BE, CF là đường cao)
* **Bước 2:** Suy ra tứ giác BHCK nội tiếp đường tròn đường kính BC.
* **Bước 3:** Vì BHCK nội tiếp đường tròn đường kính BC nên $\widehat{HKB} = \widehat{HCB}$ (cùng chắn cung HB).
* **Bước 4:** Mặt khác, $\widehat{HCB} = \widehat{HAB}$ (cùng phụ với $\widehat{ABC}$).
* **Bước 5:** Từ bước 3 và bước 4 suy ra $\widehat{HKB} = \widehat{HAB}$.
* **Bước 6:** Xét tam giác HKB và tam giác HAB có:
* $\widehat{HKB} = \widehat{HAB}$ (chứng minh trên)
* $\widehat{KHB} = \widehat{AHB} = 90^\circ$
* $\Rightarrow$ $\triangle HKB \sim \triangle HAB$ (g.g)
* **Bước 7:** Từ bước 6 suy ra $\frac{HK}{HA} = \frac{HB}{HB} = 1 \Rightarrow HK = HA$.
* **Bước 8:** Xét tam giác HKA có HK = HA nên tam giác HKA cân tại H.
* **Bước 9:** Do đó, $\widehat{HAK} = \widehat{HKA}$.
* **Bước 10:** Mặt khác, $\widehat{HKA} = \widehat{HCB}$ (cùng chắn cung HB).
* **Bước 11:** Từ bước 9 và bước 10 suy ra $\widehat{HAK} = \widehat{HCB}$.
* **Bước 12:** Xét tam giác HAK và tam giác HCB có:
* $\widehat{HAK} = \widehat{HCB}$ (chứng minh trên)
* $\widehat{AHK} = \widehat{CHB} = 90^\circ$
* $\Rightarrow$ $\triangle HAK \sim \triangle HCB$ (g.g)
* **Bước 13:** Từ bước 12 suy ra $\frac{HK}{HC} = \frac{HA}{HB} = 1 \Rightarrow HK = HC$.
* **Bước 14:** Từ bước 7 và bước 13 suy ra HK = HA = HC.
* **Bước 15:** Xét tứ giác BHCK có:
* HK = HA = HC (chứng minh trên)
* $\Rightarrow$ Tứ giác BHCK là hình thoi.
**b) Gọi M là trung điểm của BC. Chứng minh H, M, K thẳng hàng.**
* **Bước 1:** Vì M là trung điểm của BC nên HM là đường trung tuyến của tam giác HBC.
* **Bước 2:** Mặt khác, BHCK là hình thoi nên HM cũng là đường cao của tam giác HBC.
* **Bước 3:** Do đó, HM vuông góc với BC.
* **Bước 4:** Vì HK = HC nên HK là đường trung tuyến của tam giác HKC.
* **Bước 5:** Mặt khác, $\widehat{HKC} = 90^\circ$ nên HK cũng là đường cao của tam giác HKC.
* **Bước 6:** Do đó, HK vuông góc với KC.
* **Bước 7:** Từ bước 3 và bước 6 suy ra H, M, K thẳng hàng.
**c) Từ H kẻ HG vuông góc với BC (G thuộc BC). Lấy điểm I thuộc tia đối của tia GH sao cho GH = GI. Chứng minh tứ giác BCKI là hình thang cân.**
* **Bước 1:** Xét tứ giác BCKI có:
* $\widehat{BKI} = \widehat{CKI} = 90^\circ$ (BK, CK vuông góc với AB, AC)
* $\Rightarrow$ Tứ giác BCKI nội tiếp đường tròn đường kính BC.
* **Bước 2:** Vì BCKI nội tiếp đường tròn đường kính BC nên $\widehat{BIK} = \widehat{BCK}$ (cùng chắn cung BK).
* **Bước 3:** Mặt khác, $\widehat{BCK} = \widehat{HKB}$ (cùng chắn cung HB).
* **Bước 4:** Từ bước 2 và bước 3 suy ra $\widehat{BIK} = \widehat{HKB}$.
* **Bước 5:** Xét tam giác BIK và tam giác BHK có:
* $\widehat{BIK} = \widehat{HKB}$ (chứng minh trên)
* $\widehat{BKI} = \widehat{BKH} = 90^\circ$
* $\Rightarrow$ $\triangle BIK \sim \triangle BHK$ (g.g)
* **Bước 6:** Từ bước 5 suy ra $\frac{BI}{BH} = \frac{BK}{BK} = 1 \Rightarrow BI = BH$.
* **Bước 7:** Mặt khác, GH = GI nên BH = BI = GH + HI = GI + HI = HI.
* **Bước 8:** Do đó, BH = HI.
* **Bước 9:** Xét tứ giác BCKI có:
* BI = BH (chứng minh trên)
* $\widehat{BKI} = \widehat{CKI} = 90^\circ$
* $\Rightarrow$ Tứ giác BCKI là hình thang cân.
**Kết luận:**
* a) Tứ giác BHCK là hình thoi.
* b) H, M, K thẳng hàng.
* c) Tứ giác BCKI là hình thang cân.
a) Đa thức biểu thị số mét khối cần bơm đầy bể trong bể 1 là:
\(1,2\cdot x\cdot y=1,2xy\left(m^3\right)\)
Đa thức biểu thị số mét khối cần bơm đầy bể trong bể 2 là:
\(1,2\cdot5\cdot x\cdot5\cdot y=37,5xy\left(m^3\right)\)
b) Tổng số mét khối nước cần đổ vào 2 bể là:
\(1,2xy+37,5xy=38,7xy\left(m^3\right)\)
Số mét khối nước cần đổ vào bể khi x = 4 m và y = 3 m
\(38,7\cdot4\cdot3=464,4\left(m^3\right)\)
) Đa thức biểu thị số mét khối cần bơm đầy bể trong bể 1 là:
1,2⋅�⋅�=1,2��(�3)1,2⋅x⋅y=1,2xy(m3)
Đa thức biểu thị số mét khối cần bơm đầy bể trong bể 2 là:
1,2⋅5⋅�⋅5⋅�=37,5��(�3)1,2⋅5⋅x⋅5⋅y=37,5xy(m3)
b) Tổng số mét khối nước cần đổ vào 2 bể là:
1,2��+37,5��=38,7��(�3)1,2xy+37,5xy=38,7xy(m3)
Số mét khối nước cần đổ vào bể khi x = 4 m và y = 3 m
38,7⋅4⋅3=464,4(�3)38,7⋅4⋅3=464,4(m3)
`a,` \(\left\{{}\begin{matrix}x-2\ne0\Leftrightarrow x\ne2\\x+2\ne0\Leftrightarrow x\ne-2\end{matrix}\right.\)
\(b,A=\dfrac{x^2}{x^2-4}-\dfrac{x}{x-2}-\dfrac{2}{x+2}\\ =\dfrac{x^2}{\left(x-2\right)\left(x+2\right)}-\dfrac{x}{x-2}-\dfrac{2}{x+2}\\ =\dfrac{x^2-x\left(x+2\right)-2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\\ =\dfrac{x^2-x^2-2x-2x+4}{\left(x-2\right)\left(x+2\right)}\\ =\dfrac{-4x+4}{x-4}\)
`c,` Để `A=2` ta có
\(\dfrac{-4x+4}{x-4}=2\left(x\ne4\right)\\ \Leftrightarrow\dfrac{-4x+4}{x-4}=\dfrac{2\left(x-4\right)}{x-4}\\ \Leftrightarrow-4x+5=2x-8\\ \Leftrightarrow-6x=-13\\ \Leftrightarrow x=\dfrac{13}{6}\)