cho các số a,b,c>0 và \(\dfrac{a+b}{3}\)=\(\dfrac{b+c}{4}\)=\(\dfrac{c+a}{5}\)
Tính giá trị biểu thức của bài toán: M=10a+b-7c+2017
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng t/c dãy tỉ số bằng nhau:
\(\dfrac{3x-2y}{4}=\dfrac{4y-3z}{2}=\dfrac{2z-4x}{3}=\dfrac{12x-8y}{16}=\dfrac{8y-6z}{4}\)
\(=\dfrac{6z-12x}{9}=\dfrac{12x-8y+8y-6z+6z-12x}{16+4+9}=0\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{3x-2y}{4}=0\\\dfrac{4y-3z}{2}=0\\\dfrac{2z-4x}{3}=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}3x=2y\\4y=3z\\2z=4x\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{3}\\\dfrac{y}{3}=\dfrac{z}{4}\\\dfrac{z}{4}=\dfrac{x}{2}\end{matrix}\right.\)
\(\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{2y}{6}=\dfrac{3z}{12}=\dfrac{x-2y+3z}{2-6+12}=\dfrac{8}{8}=1\)
\(\Rightarrow\left\{{}\begin{matrix}x=2.1=2\\y=3.1=3\\z=4.1=4\end{matrix}\right.\)
Ta có: \(\dfrac{3x-2y}{4}=\dfrac{4y-3z}{2}=\dfrac{2z-4x}{3}\)
hay \(\dfrac{12x-8y}{16}=\dfrac{8y-6z}{4}=\dfrac{6z-12x}{9}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{12x-8y}{16}=\dfrac{8y-6z}{4}=\dfrac{6z-12x}{9}=\dfrac{12x-8y+8y-6z+6z-12x}{16+4+9}=\dfrac{0}{29}=0\)
Do đó:
\(\dfrac{3x-2y}{4}=0\Rightarrow3x=2y\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}\left(1\right)\)
\(\dfrac{4y-3z}{2}=0\Rightarrow4y=3z\Rightarrow\dfrac{y}{3}=\dfrac{z}{4}\left(2\right)\)
\(\dfrac{2z-4x}{3}=0\Rightarrow2z=4x\Rightarrow\dfrac{z}{4}=\dfrac{x}{2}\left(3\right)\)
Từ (1), (2) và (3) suy ra: \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\Rightarrow\dfrac{x}{2}=\dfrac{2y}{6}=\dfrac{3z}{12}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{2}=\dfrac{2y}{6}=\dfrac{3z}{12}=\dfrac{x-2y+3z}{2-6+12}=\dfrac{8}{8}=1\)
Do đó:
\(\dfrac{x}{2}=1\Rightarrow x=2.1=2\)
\(\dfrac{y}{3}=1\Rightarrow y=3.1=3\)
\(\dfrac{z}{4}=1\Rightarrow z=4.1=4\)
Vậy x = 2; y = 3; z = 4.
\(#NqHahh\)
Lời giải:
Theo bài ra ta có:
$\frac{x}{3}=\frac{y}{5}; \frac{y}{4}=\frac{z}{5}$
$\Rightarrow \frac{x}{12}=\frac{y}{20}=\frac{z}{25}$
Áp dụng TCDTSBN:
$\frac{x}{12}=\frac{y}{20}=\frac{z}{25}=\frac{x+y+z}{12+20+25}=\frac{456}{57}=8$
$\Rightarrow x=12.8=96; y=20.8=160; z=25.8=200$
Olm chào em, em cần làm gì với dòng chữ này?
Lời giải:
a. $A(x)=(3x^4+x^4)+\frac{1}{3}x^3+(-x^2+2x^2)+(-x)+(5-2)$
$=4x^4+\frac{1}{3}x^3+x^2-x+3$
b. $B(x)=(5x^5-5x^5)+(-x^4+2x^4)+x^3+(-2x^2-3x^2)+4$
$=x^4+x^3-5x^2+4$
c. $C(x)=(-x^5+3x^5)+(2x^4-x^4)+(2x^3)+(-x^2-2x^2)+1$
$=2x^5+x^4+2x^3-3x^2+1$
Đổi: 100kg=1 tạ
20 tạ thóc cho số kg gạo là: 70(20:1)= 1400(kg)
Đổi 20 tạ = 2000 kg
20 tạ thóc cho số ki-lô-gam gạo là:
70 x (2000 : 100) = 1400 (kg)
Kết luận:..
a; 5\(x\) - 7 = 3\(x\) + 9
5\(x\) - 3\(x\) = 9 + 7
2\(x\) = 16
\(x\) = 16: 2
\(x\) = 8
Vậy \(x=8\)
b; 1\(\dfrac{3}{4}\)\(x\) + 1\(\dfrac{1}{2}\) = - \(\dfrac{4}{5}\)
\(\dfrac{7}{4}\)\(x\) + \(\dfrac{3}{2}\) = - \(\dfrac{4}{5}\)
\(\dfrac{7}{4}\)\(x\) = - \(\dfrac{4}{5}\) - \(\dfrac{3}{2}\)
\(\dfrac{7}{4}\)\(x\) = - \(\dfrac{23}{10}\)
\(x\) = - \(\dfrac{23}{10}\) : \(\dfrac{7}{4}\)
\(x\) = - \(\dfrac{46}{35}\)
Vậy \(x=-\dfrac{46}{35}\)
c; \(x\) + \(\dfrac{1}{2}\) = 25:23
\(x\) + \(\dfrac{1}{2}\) = 22
\(x\) + \(\dfrac{1}{2}\) = 4
\(x\) = 4 - \(\dfrac{1}{2}\)
\(x\) = \(\dfrac{7}{2}\)
Vậy \(x=\dfrac{7}{2}\)
d; (\(x+\dfrac{1}{2}\))2 = \(\dfrac{4}{25}\)
\(\left[{}\begin{matrix}x+\dfrac{1}{2}=-\dfrac{2}{5}\\x+\dfrac{1}{2}=\dfrac{2}{5}\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=-\dfrac{2}{5}-\dfrac{1}{2}\\x=-\dfrac{2}{5}+\dfrac{1}{2}\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=-\dfrac{9}{10}\\x=-\dfrac{1}{10}\end{matrix}\right.\)
vậy \(x\) \(\in\) {- \(\dfrac{9}{10}\); - \(\dfrac{1}{10}\)}
Đặt \(\dfrac{a+b}{3}=\dfrac{b+c}{4}=\dfrac{c+a}{5}=t\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=3t\\b+c=4t\\c+a=5t\end{matrix}\right.\)
\(\Rightarrow\left(a+b\right)+\left(b+c\right)+\left(c+a\right)=3t+4t+5t\)
\(\Leftrightarrow2\left(a+b+c\right)=12t\)
\(\Leftrightarrow a+b+c=6t\)
+ \(\left\{{}\begin{matrix}a+b=3t\\a+b+c=6t\end{matrix}\right.\) \(\Rightarrow3t+c=6t\) \(\Leftrightarrow c=3t\)
+ \(\left\{{}\begin{matrix}b+c=4t\\a+b+c=6t\end{matrix}\right.\) \(\Rightarrow a+4t=6t\) \(\Leftrightarrow a=2t\)
+ \(\left\{{}\begin{matrix}c+a=5t\\a+b+c=6t\end{matrix}\right.\) \(\Rightarrow b+5t=6t\) \(\Leftrightarrow b=t\)
Thay \(a=2t;b=t;c=3t\) vào \(M\) ta được
\(M=10\cdot2t+t-7\cdot3t+2017=20t+t-21t+2017=2017\)
Vậy \(M=2017\)