Một thùng bánh có dạng hình hộp chữ nhật với chiều dài 30 cm, chiều
rộng 20 cm và chiều cao 15 cm. Người ta đựng những hộp bánh có dạng hình lậpphương có cạnh 10 cm vào trong thùng đó. Hỏi thùng đó đựng được bao nhiêu
hộp bánh?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x, y là 2 đại lượng tỉ lệ nghịch nên ta có: \(xy=k=>k=4\cdot1,5=6\)
\(x=0,5=>y=\dfrac{k}{x}=\dfrac{6}{0,5}=12\)
\(x=-1,2=>y=\dfrac{k}{x}=\dfrac{6}{-1,2}=-5\)
\(y=3=>x=\dfrac{k}{y}=\dfrac{6}{3}=2\)
\(y=-2=>x=\dfrac{k}{y}=\dfrac{6}{-2}=-3\)
x | 0,5 | -1,2 | 2 | -3 | 4 |
y | 12 | -5 | 3 | -2 | 1,5 |
x và y là 2 đại lượng tỉ lệ nghịch nên: \(xy=k=>k=-2\cdot-15=30\)
\(x=10=>y=\dfrac{k}{x}=\dfrac{30}{10}=3\)
\(y=-3=>x=\dfrac{30}{-3}=-10\)
\(x=15=>y=\dfrac{k}{x}=\dfrac{30}{15}=2\)
\(y=5=>x=\dfrac{k}{y}=\dfrac{30}{5}=6\)
x | -2 | 10 | -10 | 15 | 6 |
y | -15 | 3 | -3 | 2 | 5 |
\(\left[\left(-\dfrac{1}{2}\right)^3-\left(\dfrac{3}{4}\right)^3\cdot\left(-2\right)^2\right]:\left[2\cdot\left(-1\right)^5+\left(\dfrac{3}{4}\right)^2-\dfrac{3}{8}\right]\\ =\left(-\dfrac{1}{8}-\dfrac{27}{64}\cdot4\right):\left(2\cdot-1+\dfrac{9}{16}-\dfrac{3}{8}\right)\\ =\left(-\dfrac{1}{8}-\dfrac{27}{16}\right):\left(-2+\dfrac{9}{16}-\dfrac{3}{8}\right)\\ =\left(\dfrac{-2}{16}-\dfrac{27}{16}\right):\left(\dfrac{-32}{16}+\dfrac{9}{16}-\dfrac{6}{16}\right)\\ =\dfrac{-29}{16}:\dfrac{-29}{16}\\ =1\)
____________________________
\(\left[3\dfrac{1}{6}-\left(0,06\cdot7\dfrac{1}{2}+6\dfrac{1}{4}\cdot0,24\right)\right]:\left(1\dfrac{2}{3}+2\dfrac{2}{3}\cdot1\dfrac{3}{4}\right)\\ =\left[\dfrac{19}{6}-\left(0,06\cdot\dfrac{15}{2}+\dfrac{25}{4}\cdot4\cdot0,06\right)\right]:\left(\dfrac{5}{3}+\dfrac{8}{3}\cdot\dfrac{7}{4}\right)\\ =\left[\dfrac{19}{6}-0,06\cdot\left(\dfrac{15}{4}+25\right)\right]:\left(\dfrac{5}{3}+\dfrac{14}{3}\right)\\ =\left(\dfrac{19}{6}-0,06\cdot\dfrac{65}{2}\right):\dfrac{19}{3}\\ =\left(\dfrac{19}{6}-\dfrac{39}{20}\right):\dfrac{19}{3}\\ =\dfrac{73}{60}:\dfrac{19}{3}\\ =\dfrac{73}{380}\)
Bài 1:
a: Hai cạnh đáy là AB,CD
Hai cạnh bên là AD,BC
b: Các cặp góc kề cạnh đáy là:
\(\widehat{BAD};\widehat{ABC}\)
\(\widehat{ADC};\widehat{BCD}\)
Các cặp góc kề cạnh bên là:
\(\widehat{BAD};\widehat{ADC}\)
\(\widehat{ABC};\widehat{BCD}\)
c: Hai đường chéo là AC,BD
Bài 2:
a: Ta có: ΔDAC vuông cân tại D
=>\(\widehat{DAC}=\widehat{DCA}=45^0\)
Ta có: ΔABC vuông cân tại A
=>\(\widehat{ABC}=\widehat{ACB}=45^0\)
Ta có: \(\widehat{DAC}=\widehat{ACB}\left(=45^0\right)\)
mà hai góc này là hai góc ở vị trí so le trong
nên AD//CB
=>ABCD là hình thang
Hình thang ABCD có AD\(\perp\)DC
nên ABCD là hình thang vuông
b: ABCD là hình thang vuông có hai đáy là AD,CB và AD\(\perp\)DC
=>CB\(\perp\)CD
=>\(\widehat{ADC}=\widehat{DCB}=90^0\)
Ta có: AD//CB
=>\(\widehat{DAB}+\widehat{ABC}=180^0\)
=>\(\widehat{DAB}=180^0-45^0=135^0\)
Bài 1:
a: Hai cạnh đáy là AB,CD
Hai cạnh bên là AD,BC
b: Các cặp góc kề cạnh đáy là:
\(\widehat{BAD};\widehat{ABC}\)
\(\widehat{ADC};\widehat{BCD}\)
Các cặp góc kề cạnh bên là:
\(\widehat{BAD};\widehat{ADC}\)
\(\widehat{ABC};\widehat{BCD}\)
c: Hai đường chéo là AC,BD
Bài 2:
a: Ta có: ΔDAC vuông cân tại D
=>\(\widehat{DAC}=\widehat{DCA}=45^0\)
Ta có: ΔABC vuông cân tại A
=>\(\widehat{ABC}=\widehat{ACB}=45^0\)
Ta có: \(\widehat{DAC}=\widehat{ACB}\left(=45^0\right)\)
mà hai góc này là hai góc ở vị trí so le trong
nên AD//CB
=>ABCD là hình thang
Hình thang ABCD có AD\(\perp\)DC
nên ABCD là hình thang vuông
b: ABCD là hình thang vuông có hai đáy là AD,CB và AD\(\perp\)DC
=>CB\(\perp\)CD
=>\(\widehat{ADC}=\widehat{DCB}=90^0\)
Ta có: AD//CB
=>\(\widehat{DAB}+\widehat{ABC}=180^0\)
=>\(\widehat{DAB}=180^0-45^0=135^0\)
a)
\(\dfrac{8}{9}-\dfrac{1}{72}-\dfrac{1}{56}-\dfrac{1}{42}-\dfrac{1}{30}-\dfrac{1}{20}-\dfrac{1}{12}-\dfrac{1}{6}-\dfrac{1}{2}\\ =\dfrac{8}{9}-\left(\dfrac{1}{72}+\dfrac{1}{56}+\dfrac{1}{42}+\dfrac{1}{30}+\dfrac{1}{20}+\dfrac{1}{12}+\dfrac{1}{6}+\dfrac{1}{2}\right)\\ =\dfrac{8}{9}-\left(\dfrac{1}{8\cdot9}+\dfrac{1}{7\cdot8}+\dfrac{1}{6\cdot7}+\dfrac{1}{6\cdot5}+\dfrac{1}{4\cdot5}+\dfrac{1}{3\cdot4}+\dfrac{1}{2\cdot3}+\dfrac{1}{1\cdot2}\right)\\ =\dfrac{8}{9}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}\right)\\ =\dfrac{8}{9}-\left(1-\dfrac{1}{9}\right)\\ =\dfrac{8}{9}-\dfrac{8}{9}\\ =0\)
b)
\(\left(-\dfrac{1}{2}\right)-\left(\dfrac{-3}{5}\right)+\left(-\dfrac{1}{9}\right)+\dfrac{1}{127}-\dfrac{7}{18}+\dfrac{4}{35}-\left(\dfrac{-2}{7}\right)\\ =\left(-\dfrac{1}{2}-\dfrac{1}{9}-\dfrac{7}{18}\right)+\left(\dfrac{3}{5}+\dfrac{2}{7}+\dfrac{4}{35}\right)+\dfrac{1}{127}\\ =\dfrac{-9-2-7}{18}+\dfrac{21+10+4}{35}+\dfrac{1}{127}\\ =-1+1+\dfrac{1}{127}\\ =\dfrac{1}{127}\)
c) (*sửa*)
\(\dfrac{3}{5}+\dfrac{3}{11}-\dfrac{-3}{7}+\dfrac{2}{97}-\dfrac{1}{35}-\dfrac{3}{4}-\dfrac{23}{44}\\ =\dfrac{3}{5}+\dfrac{3}{11}+\dfrac{3}{7}+\dfrac{2}{97}-\dfrac{1}{35}-\dfrac{3}{4}+\dfrac{23}{44}\\ =\left(\dfrac{3}{5}+\dfrac{3}{7}-\dfrac{1}{35}\right)+\left(\dfrac{3}{11}-\dfrac{3}{4}-\dfrac{23}{44}\right)+\dfrac{2}{97}\\ =\dfrac{21+15-1}{35}+\dfrac{12-33-23}{44}+\dfrac{2}{97}\\ =1+\left(-1\right)+\dfrac{2}{97}\\ =\dfrac{2}{97}\)
\(x^2+5xy+6y^2+x+2y-2=0\)
\(\Leftrightarrow x^2+2xy+3xy+6y^2+x+2y=2\)
\(\Leftrightarrow x\left(x+2y\right)+3y\left(x+2y\right)+\left(x+2y\right)=2\)
\(\Leftrightarrow\left(x+2y\right)\left(x+3y+1\right)=2\)
Ta xét các TH sau:
TH1: \(\left\{{}\begin{matrix}x+2y=1\\x+3y+1=2\end{matrix}\right.\Leftrightarrow\left(x;y\right)=\left(1;0\right)\)
TH2: \(\left\{{}\begin{matrix}x+2y=2\\x+3y+1=1\end{matrix}\right.\Leftrightarrow\left(x;y\right)=\left(6;-2\right)\)
TH3: \(\left\{{}\begin{matrix}x+2y=-1\\x+3y+1=-2\end{matrix}\right.\Leftrightarrow\left(x;y\right)=\left(3;-2\right)\)
TH4: \(\left\{{}\begin{matrix}x+2y=-2\\x+3y+1=-1\end{matrix}\right.\Leftrightarrow\left(x;y\right)=\left(-2;0\right)\)
Vậy có 4 cặp số (x; y) thỏa mãn đề bài là \(\left(1;0\right),\left(6;-2\right),\left(3;-2\right),\left(-2;0\right)\)
ABCD là hình vuông
=>AB//CD
mà C\(\in\)DE
nên AB//DE
Ta có: DEFG là hình chữ nhật
=>DE//FG
mà AB//DE
nên AB//FG
Thể tích của chiếc thùng là:
\(30\cdot20\cdot15=9000\left(cm^3\right)\)
Thể tích của mỗi hộp bánh là:
\(10\cdot10\cdot10=1000\left(cm^3\right)\)
Chiếc thùng có thể đựng được số chiếc bánh là:
\(9000:1000=9\) (chiếc)
Bạn phải xem xem có thể xếp được 9 hộp bánh đó vào thùng được không. Thùng có chiều cao 15cm nhưng mỗi hộp bánh lại có chiều cao 10cm nên không thể xếp các hộp bánh thành 2 tầng được mà chỉ xếp được 1 tầng hộp bánh mà thôi. Trong trường hợp đó, số hộp bánh tối đa mà hộp chứa được là \(\dfrac{20.30}{10.10}=6\) hộp nhé.