Tinh dien tich manh dat co hinh dang nhu ve sau gom : Hinh tam giac vuong AEB co AE = 3 m . Hinh thang co AB = 2/5 DC ; DC = 10m ; chieu cao 3m
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ AH\(\perp\)BC tại H, AK\(\perp\)SH tại K
\(\widehat{SB;\left(ABC\right)}=45^0\)
=>\(\widehat{BS;BA}=45^0\)
=>\(\widehat{SBA}=45^0\)
Xét ΔSAB vuông tại A có \(tanSBA=\dfrac{SA}{AB}\)
=>\(\dfrac{SA}{a}=tan45=1\)
=>SA=a
ΔABC vuông cân tại A
=>\(AB=AC=a\) và \(BC=\sqrt{AB^2+AC^2}=a\sqrt{2}\)
ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC
=>\(AH=HB=HC=\dfrac{BC}{2}=\dfrac{a\sqrt{2}}{2}\)
Ta có: BC\(\perp\)AH
BC\(\perp\)SA
AH,SA cùng thuộc mp(SAH)
Do đó: BC\(\perp\)(SAH)
=>BC\(\perp\)AK
Ta có: AK\(\perp\)SH
AK\(\perp\)BC
SH,BC cùng thuộc mp(SBC)
Do đó: AK\(\perp\)(SBC)
=>AK là khoảng cách từ A đến mp(SBC)
ΔSAH vuông tại A
=>\(SH^2=SA^2+AH^2=a^2+\left(\dfrac{a\sqrt{2}}{2}\right)^2=a^2+\dfrac{1}{2}a^2=\dfrac{3}{2}a^2\)
=>\(SH=\dfrac{a\sqrt{6}}{2}\)
Xét ΔSAH vuông tại A có AK là đường cao
nên \(AK\cdot SH=SA\cdot AH\)
=>\(AK\cdot\dfrac{a\sqrt{6}}{2}=a\cdot\dfrac{a\sqrt{2}}{2}\)
=>\(AK\cdot\sqrt{6}=a\sqrt{2}\)
=>\(AK=a\sqrt{\dfrac{2}{6}}=a\sqrt{\dfrac{1}{3}}=\dfrac{a\sqrt{3}}{3}\)
Đáp án + Giải thích các bước giải:
Gọi x ( m ) là chiều dài ban đầu của khu vườn hình chữ nhật ( x∈N∗∗, x > 0 )
Gọi y ( m ) là chiều rộng ban đầu của khu vườn hình chú nhật ( y∈N∗∗ , y > 0 )
Một khu vườn hình chữ nhật có chu vi là 200 m, nên ta có phương trình:
( x + y ) . 2 = 200
⇔ 2x + 2y = 200 ( 1 )
Do mở rộng đường giao thông nông thôn nên chiều dài vườn giảm 8 m và biết diện tích đất còn lại là 2080 cm² dùng để trồng cây, nên ta có phương trình:
( x - 8 ) . y = 2080 ( 2 )
Ta có: ( 1 )
2x + 2y = 200
⇔ x + y = 100
⇔ x = 100 - y
Thay y vào ( 2 ), ta được:
( 100 - y - 8 ) . y = 2080
⇔ 92y - y² = 2080
⇔ - y² + 92y - 2080 = 0
Giải phương trình, ta được:
{y=52y=40{�=52�=40
=> 100 - 52 = 48 ( nhận )
=> 100 - 40 = 60 ( nhận )
Vậy chiều dài là 60 m và chiều rộng là 48 - 8 = 40 m
a: Gọi giá niêm yết của 1 cái bút là x(đồng)
(Điều kiện: x>0)
Giá của 1 cây bút trong 30 cây bút đầu tiên là:
\(x\left(1-20\%\right)=0,8x\left(đồng\right)\)
Giá của 1 cây bút từ cây thứ 31 là:
\(0,8x\cdot\left(1-40\%\right)=0,48x\left(đồng\right)\)
Tổng số tiền là 900000 đồng nên ta có:
\(0,8x\cdot30+0,48x\cdot10=900000\)
=>24x+4,8x=900000
=>28,8x=900000
=>x=31250(nhận)
vậy: Giá niêm yết của 1 cây bút là 31250 đồng
b: Số tiền còn lại sau khi mua 40 cây đầu tiên là:
1260000-900000=360000(đồng)
Số cây bút còn lại mua được là:
360000:(0,48*31250)=24(cây)
Tổng số cây bút mua được là:
40+24=64(cây)
x2+y2+z2=3xyz⇒xyz+yxz+zxy=3�2+�2+�2=3���⇒���+���+���=3
Áp dụng bất đẳng thức Cô-si cho hai số dương xyz;yxz���;��� ta có: xyz+yxz≥2√xyz.yx=2z���+���≥2���.��=2�
Tương tự ta cũng có: yxz+zxy≥2x;zxy+xyz≥2y���+���≥2�; ���+���≥2�
⇒(xyz+yxz)+(yxz+zxy)+(zxy+xyz)≥2z+2x+2y⇒xyz+yzx+zxy≥1x+1y+1z⇒1x+1y+1z≤3⇒���+���+���+���+���+���≥2�+2�+2�⇒���+���+���≥1�+1�+1�⇒1�+1�+1�≤3
Lại có: x4+yz≥2√x4yz=2x2√yz⇒x2x4+yz≤12√yz=14.2.1√y.1√z≤14(1y+1z)�4+��≥2�4��=2�2��⇒�2�4+��≤12��=14.2.1�.1�≤14(1�+1�)
Tương tự y2y4+xz≤14(1x+1z);z2z4+xy≤14(1x+1y)�2�4+��≤14(1�+1�);�2�4+��≤14(1�+1�)
Suy ra
P=x2x4+yz+y2y4+xz+z2z4+xy≤14(2x+2y+2z)=12(1x+1y+1z)≤32=>P≤32�=�2�4+��+�2�4+��+�2�4+��≤14(2�+2�+2�)=12(1�+1�+1�)≤32=>�≤32
Vậy giá trị nhỏ nhất của P = 3232 khi x = y = z = 1.
Đặt \(A=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}+\dfrac{1}{64}\)
=>\(2A=1+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}\)
=>\(2A-A=1+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}-\dfrac{1}{2}-\dfrac{1}{4}-\dfrac{1}{8}-\dfrac{1}{16}-\dfrac{1}{32}-\dfrac{1}{64}\)
=>\(A=1-\dfrac{1}{64}=\dfrac{63}{64}\)
\(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}+\dfrac{1}{64}\\ =1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-...-\dfrac{1}{64}\)
\(=1-\dfrac{1}{64}\)
\(=\dfrac{63}{64}\)
Giá ban đầu của 4 quyển sách là:
30600:(1-15%)=30600:0,85=36000(đồng)
=>Giá của 1 quyển sách là 36000:4=9000(đồng)
a: \(A\left(x\right)=-5x^3+3x^4-2x^4-4x^7+4x^7+2x-7\)
\(=\left(3x^4-2x^4\right)-5x^3+2x-7\)
\(=x^4-5x^3+2x-7\)
Bậc là 4
Hệ số cao nhất là 1
Hệ số tự do là -7
b: \(A\left(x\right)-M\left(x\right)=3x^4-5x^2+1\)
=>\(M\left(x\right)=A\left(x\right)-\left(3x^4-5x^2+1\right)\)
\(=x^4-5x^3+2x-7-3x^4+5x^2-1\)
\(=-2x^4-5x^3+5x^2+2x-8\)
c: \(N\left(x\right)=\dfrac{A\left(x\right)}{x^2-3x+1}=\dfrac{x^4-5x^3+2x-7}{x^2-3x+1}\)
\(=\dfrac{x^4-3x^3+x^2-2x^3+6x^2-2x-7x^2+21x-7-17x}{x^2-3x+1}\)
\(=x^2-2x-7-\dfrac{17x}{x^2-3x+1}\)
Đặt \(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=k\)
=>\(x=3k;y=4k;z=5k\)
\(2x^2+2y^2-3z^2=-100\)
=>\(2\cdot\left(3k\right)^2+2\cdot\left(4k\right)^2-3\cdot\left(5k\right)^2=-100\)
=>\(18k^2+32k^2-75k^2=-100\)
=>\(-25k^2=-100\)
=>\(k^2=4\)
=>\(\left[{}\begin{matrix}k=2\\k=-2\end{matrix}\right.\)
TH1: k=2
=>\(x=3\cdot2=6;y=4\cdot2=8;z=5\cdot2=10\)
TH2: k=-2
=>\(x=3\cdot\left(-2\right)=-6;y=4\cdot\left(-2\right)=-8;z=5\cdot\left(-2\right)=-10\)
\(\dfrac{x}{4}\) = \(\dfrac{2}{7}\)
\(x\) = \(\dfrac{2}{7}\) \(\times\) 4
\(x\) = \(\dfrac{8}{7}\)
\(AB=\dfrac{2}{5}DC=\dfrac{2}{5}\cdot10=4\left(m\right)\)
Diện tích tam giác AEB là:
\(S_{AEB}=\dfrac{1}{2}\cdot AE\cdot AB=\dfrac{1}{2}\cdot3\cdot4=6\left(m^2\right)\)
Diện tích hình thang ABCD là:
\(S_{ABCD}=\dfrac{1}{2}\times\left(10+4\right)\times3=21\left(m^2\right)\)
Diện tích mảnh đất là 6+21=27(m2)