K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2024

a) \(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{e}{f}=\dfrac{a+c+e}{b+d+f}\)

b) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{4}=\dfrac{y}{7}=\dfrac{x+y}{4+7}=\dfrac{55}{11}=5\)

\(\Rightarrow\dfrac{x}{4}=5\Rightarrow x=4\cdot5=20\)

\(\Rightarrow\dfrac{y}{7}=5\Rightarrow x=7\cdot5=35\)

4 tháng 6 2024

a) 𝑎𝑏=𝑐𝑑=𝑒𝑓=𝑎+𝑐+𝑒𝑏+𝑑+𝑓ba=dc=fe=b+d+fa+c+e.

b) 𝑥4=𝑦7=𝑥+𝑦4+7=5511=54x=7y=4+7x+y=1155=5;

Suy ra 𝑥=4.5=20;𝑦=7.5=35x=4.5=20;y=7.5=35.

24 tháng 2 2024

a) Các tỉ số bằng nhau là: 

\(7:21\) và \(\dfrac{1}{4}:\dfrac{3}{4}\) 

\(\dfrac{1}{5}:\dfrac{1}{2}\) và \(1:2,5\) 

b) \(\dfrac{5}{3}=\dfrac{x}{9}\)

\(\Rightarrow x=\dfrac{5\cdot9}{3}\)

\(\Rightarrow x=5\cdot3\)

\(\Rightarrow x=15\)

4 tháng 6 2024

a) 15:12=1:2,551:21=1:2,5.

b) 53=𝑥935=9x suy ra 𝑥=5.93=15x=35.9=15.

28 tháng 2 2024

Báo hả em

Gọi hai số cần tìm là a,b

Hai số tỉ lệ với 3 và 5 nên \(\dfrac{a}{3}=\dfrac{b}{5}\)

Tổng hai số là 32 nên a+b=32

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{a+b}{3+5}=\dfrac{32}{8}=4\)

=>\(a=4\cdot3=12;b=4\cdot5=20\)

22 tháng 2 2024

Góc IA = góc IE làm sao được em. Góc thì phải có 3 đỉnh chứ sao mỗi góc ở đây có hai đỉnh vậy em

19 tháng 2 2024

a) x và y là hai đại lượng tỉ lệ nghịch theo hệ số a nên: 

`a=y/x=4/2=2`

b) Ta có: `a=2`

`=>y/x=2=>y=2x`

c) khi `y=-1=>2x=-1=>x=-1/2`

Khi `y=2=>2x=2=>x=1`

AH
Akai Haruma
Giáo viên
20 tháng 2 2024

Lời giải:
a. Xét tam giác $BAD$ và $BHD$ có:

$\widehat{BAD}=\widehat{BHD}=90^0$

$BD$ chung

$\widehat{ABD}=\widehat{HBD}$ (do $BD$ là phân giác $\widehat{B}$)

$\Rightarrow \triangle BAD=\triangle BHD$ (ch-gn)

$\Rightarrow AB=BH$

b. Từ tam giác bằng nhau phần a suy ra $AD=DH$ (1)

Xét tam giác vuông $DHC$ vuông tại $H$ nên $DC> DH$ (do $DC$ là cạnh huyền) (2)

Từ $(1); (2)\Rightarrow DC> AD$

c.

Xét tam giác $BIH$ và $BCA$ có:

$\widehat{B}$ chung

$BH=BA$ (cmt)

$\widehat{BHI}=\widehat{BAC}=90^0$

$\Rightarrow \triangle BIH=\triangle BCA$ (g.c.g)

$\Rightarrow BI=BC$
$\Rightarrow BIC$ cân tại $I$

AH
Akai Haruma
Giáo viên
20 tháng 2 2024

Hình vẽ:

AH
Akai Haruma
Giáo viên
18 tháng 2 2024

Lời giải:

Xét tam giác $BAM$ và $CDM$ có:

$BM=CM$

$AM=DM$

$\widehat{BMA}=\widehat{CMD}$ (đối đỉnh)

$\Rightarrow \triangle BAM=\triangle CDM$ (c.g.c)

$\Rightarrow AB=CD$ và $\widehat{BAM}=\widehat{CDM}$

Mà 2 góc này ở vị trí so le trong nên $AB\parallel CD$

$AB\perp AC$ nên $CD\perp AC\Rightarrow \widehat{DCA}=90^0$

Xét tam giác $BAC$ và $DCA$ có:

$\widehat{BAC}=\widehat{DCA}=90^0$

$BA=CD$ (cmt)

$AC$ chung

$\Rightarrow \triangle BAC=\triangle DCA$ (c.g.c)

$\Rightarrow BC=DA$

$\Rightarrow BC:2=DA:2\Rightarrow BM=AM$

$\Rightarrow MBA$ cân tại $M\Rightarrow \widehat{MBA}=\widehat{MAB}$ 

Hay $\widehat{ABC}=\widehat{BAD}$

AH
Akai Haruma
Giáo viên
18 tháng 2 2024

Hình vẽ: