tam giác MNP là đường trung tuyến ME và PF cắt tại G, A là trung điểm MG, B là trung điểm PG. chứng minh tam gaisc GEF= tam giác GAB, EFSONG SONG AB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Lời giải:
Áp dụng TCDTSBN:
$\frac{a}{5}=\frac{b}{3}=\frac{c}{7}=\frac{a-b}{5-3}=\frac{10}{2}=5$
$\Rightarrow a=5.5=25; b=5.3=15; c=7.5=35$

a: 4x=5y
=>\(\dfrac{x}{5}=\dfrac{y}{4}\)
7y=4z
=>\(\dfrac{y}{4}=\dfrac{z}{7}\)
Do đó: \(\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{7}\)
mà x-y-z=24
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{7}=\dfrac{x-y-z}{5-4-7}=\dfrac{24}{-6}=-4\)
=>\(x=-4\cdot5=-20;y=-4\cdot4=-16;z=-4\cdot7=-28\)
b:
Sửa đề: x+y-z=38
\(\dfrac{x}{5}=\dfrac{y}{4}\)
=>\(\dfrac{x}{15}=\dfrac{y}{12}\left(1\right)\)
\(\dfrac{y}{3}=\dfrac{z}{2}\)
=>\(\dfrac{y}{12}=\dfrac{z}{8}\left(2\right)\)
Từ (1),(2) suy ra \(\dfrac{x}{15}=\dfrac{y}{12}=\dfrac{z}{8}\)
mà x+y-z=38
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta đưọc:
\(\dfrac{x}{15}=\dfrac{y}{12}=\dfrac{z}{8}=\dfrac{x+y-z}{15+12-8}=\dfrac{38}{19}=2\)
=>\(x=2\cdot15=30;y=2\cdot12=24;z=2\cdot8=16\)
4x=5y;7y=4zvax-y-z=24
Để giải hệ phương trình này, chúng ta sẽ sử dụng phương pháp thế vào. Trước tiên, chúng ta sẽ giải phương trình đầu tiên để tìm giá trị của $x$ dựa trên $y$:
$$4x = 5y$$
$$x = \frac{5y}{4}$$
Tiếp theo, chúng ta sẽ thay thế giá trị của $x$ vào phương trình thứ hai để tìm giá trị của $z$ dựa trên $y$:
$$7y = 4z$$
$$z = \frac{7y}{4}$$
Cuối cùng, chúng ta sẽ thay thế giá trị của $x$ và $z$ vào phương trình thứ ba để tìm giá trị của $v$:
$$x - y - z = 24$$
$$\frac{5y}{4} - y - \frac{7y}{4} = 24$$
$$\frac{5y - 4y - 7y}{4} = 24$$
$$\frac{-6y}{4} = 24$$
$$-6y = 96$$
$$y = -16$$
Sau khi tìm được giá trị của $y$, chúng ta có thể tính toán các giá trị còn lại:
$$x = \frac{5y}{4} = \frac{5(-16)}{4} = -20$$
$$z = \frac{7y}{4} = \frac{7(-16)}{4} = -28$$
$$v = x - y - z = -20 - (-16) - (-28) = -20 + 16 + 28 = 24$$
Vậy, giá trị của $x$, $y$, $z$ và $v$ lần lượt là -20, -16, -28 và 24.


Lời giải:
$F(x)=x^3+x^2+(2a+3)x-3a=x^2(x-2)+3x(x-2)+(2a+9)x-3a$
$=x^2(x-2)+3x(x-2)+(2a+9)(x-2)+2(2a+9)-3a$
$=(x-2)(x^2+3x+2a+9)+(a+18)$
$\Rightarrow F(x)$ chia $x-2$ dư $a+18$
Để số dư là $14$
$\Rightarrow a+18=14$
$\Rightarrow a=-4$


b) xét ΔANK và ΔBNC, có:
NK = NC (gt)
\(\widehat{ANK}=\widehat{BNC}\) (đối đỉnh)
NB = NA (gt)
⇒ ΔANK = ΔBNC (c-g-c)
vì M là trung điểm của BC nên ta có: \(BC=MB+MC=2MC\)
mà KA = BC (2 cạnh tương ứng)
\(\Rightarrow BC=KA=2MC\)
c) ta có MB = MC (giả thiết)
⇒ MA là đường trung tuyến của ΔABC
⇒ MA cũng là đường phân giác của ΔABC
⇒ MA là đường phân giác của \(\widehat{BAC}\)
\(\widehat{BAC}=\widehat{BAM}+\widehat{MAC}=2\widehat{BAM}\\ \Rightarrow\widehat{BAM}=\dfrac{\widehat{BAC}}{2}=\dfrac{50^0}{2}=25^0\left(1\right)\)
Vì ΔABC cân tại A nên
\(\widehat{B}=\widehat{C}=\dfrac{\left(180^0-\widehat{A}\right)}{2}=\dfrac{\left(180^0-50^0\right)}{2}=\dfrac{130^0}{2}=65^0\)
mà \(\widehat{KAB}=\widehat{ABC}\) (2 góc tương ứng)
\(\Rightarrow\widehat{KAB}=65^0\left(2\right)\)
Từ (1) và (2) ta có:
\(\widehat{KAM}=\widehat{KAB}+\widehat{AMB}=65^0+25^0=90^0\)