CHO TAM GIÁC ABC CÓ AB=AC.GỌI M LÀ TRUNG ĐIỂM CỦA BC
a) tam giác AMB=tam giác AMC
B)AM LÀ TIA PHÂN GIÁC CỦA GÓC BAC
C)TRÊN TIA ĐỐI CỦA MA LẤY ĐIỂM D SAO CHO MD=MA.CHỨNG MINH RẰNG;AB//CD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. \(\widehat{ACB}=180-50-65=65\) độ
b. \(\widehat{xAC}=\widehat{ACB}=65\) độ
\(\widehat{yAx}=180-50-65=65\) độ
Do \(x^2\ge0;\forall x\)
\(\Rightarrow\sqrt{x^2+9}-2025\ge\sqrt{0+9}-2025=-2022\)
C là đáp án đúng
a) Xét hai tam giác $AMB$ và $AMC$ có:
$AM$ là cạnh chung;
$AB = AC$ (gt);
$BM = MC$ ($M$ là trung điểm $BC$);
Suy ra $\Delta AMB=\Delta AMC$ (c.c.c)
b) $\Delta AMB=\Delta AMC$ suy ra
$\widehat{BAM} = \widehat{CAM}$ (hai góc tương ứng)
Suy ra $AM$ là tia phân giác của góc $BAC$.
c) Xét hai tam giác $AMD$ và $DMC$ có:
$AM = AD$ (gt);
$\widehat{AMB} = \widehat{CMD}$ (hai góc đối đỉnh);
$BM = MC$.
Nên $\Delta AMD=\Delta DMC$ (c.g.c)
Suy ra $\widehat{BAM} = \widehat{CDM}$ (hai góc tương ứng)
Mà hai góc này ở vị trí so le trong nên $AB$ // $CD$.