K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
15 tháng 6 2024

Lời giải:

Ta có:

$P(1)=(2.1-1)^6+(1-2)^7=a_7.1^7+a_6.1^6+....+a_1.1+a_0$

$\Rightarrow 1+(-1)=a_7+a_6+a_5+....+a_1+a_0$

$\Rightarrow a_7+a_6+a_5+....+a_1+a_0=0$

AH
Akai Haruma
Giáo viên
15 tháng 6 2024

Lời giải:

$a+b+c=0\Rightarrow a+b=-c$. khi đó:

$a^3+b^3+c^3=(a+b)^3-3ab(a+b)+c^3=(-c)^3-3ab(-c)+c^3$

$=-c^3+3abc+c^3=3abc$

Ta có đpcm.

15 tháng 6 2024

ta có: a+b+c=0

=> c=-(a+b)

ta thay vào biểu thức:

=>a3+b3-(a+b)3=3ab(-a-b)

=>-3a2b-3ab2=-3a2b-3ab2

15 tháng 6 2024

\(Q=x^2(x+1)-3xy(x-y+1)-y^2(y-1)+xy\\=x^3+x^2+3xy(y-x)-3xy-y^3+y^2+xy\\=-(y^3-x^3)+3xy(y-x)+x^2-2xy+y^2\\=-(y-x)^3-3xy(y-x)+3xy(y-x)+(y-x)^2\\=-11^3+11^2=-1210\)

15 tháng 6 2024

\(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)-105=0\)

\(\Leftrightarrow\left[\left(x+2\right)\left(x+8\right)\right]\left[\left(x+4\right)\left(x+6\right)\right]-105=0\)

\(\Leftrightarrow\left(x^2+10x+16\right)\left(x^2+10x+24\right)-105=0\) (1)

Đặt \(x^2+10x+20=t\), khi đó (1) trở thành:

\(\left(t-4\right)\left(t+4\right)-105=0\)

\(\Leftrightarrow t^2-16-105=0\)

\(\Leftrightarrow t^2-11^2=0\)

\(\Leftrightarrow\left(t-11\right)\left(t+11\right)=0\)

\(\Rightarrow\left(x^2+10x+20-11\right)\left(x^2+10x+20+11\right)=0\)

\(\Leftrightarrow\left(x^2+10x+9\right)\left(x^2+10x+31\right)=0\)

\(\Leftrightarrow\left(x^2+9x+x+9\right)\left[\left(x+5\right)^2+6\right]=0\)

\(\Leftrightarrow x\left(x+9\right)+\left(x+9\right)=0\) (vì \(\left(x+5\right)^2+6>0;\forall x\))

\(\Leftrightarrow\left(x+9\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+9=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-9\\x=-1\end{matrix}\right.\)

Vậy phương trình đã cho có tập nghiệm là $S=\{-9;-1\}$.

$Toru$

DT
15 tháng 6 2024

\(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)-105=0\\ \Leftrightarrow\left[\left(x+2\right)\left(x+8\right)\right]\left[\left(x+4\right)\left(x+6\right)\right]=105\\ \Leftrightarrow\left(x^2+10x+16\right)\left(x^2+10x+24\right)=105\\ \Leftrightarrow\left(x^2+10x+20-4\right)\left(x^2+10x+20+4\right)=105\\ \Leftrightarrow\left(x^2+10x+20\right)^2-4^2=105\\ \Leftrightarrow\left(x^2+10x+20\right)^2=121\\ \)

\(\Rightarrow\left[{}\begin{matrix}x^2+10x+20=11\left(1\right)\\x^2+10x+20=-11\left(2\right)\end{matrix}\right.\)

Giải (1):

\(x^2+10x+9=0\\ \Leftrightarrow\left(x^2+x\right)+\left(9x+9\right)=0\\ \Leftrightarrow x\left(x+1\right)+9\left(x+1\right)=0\\ \Leftrightarrow\left(x+1\right)\left(x+9\right)=0\\ \Rightarrow\left[{}\begin{matrix}x+1=0\\x+9=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-9\end{matrix}\right.\)

Giải (2):

Nhận thấy: \(x^2+10x+20=\left(x+5\right)^2-5\ge-5\forall x\inℝ\)

Vậy pt (2) vô nghiệm

Vậy tập nghiệm pt là: \(S=\left\{-1;-9\right\}\)

15 tháng 6 2024

Kéo dài CD, BE sao cho chúng cắt đường thẳng song song với BC đi qua A  lần lượt tại K, G.

Xét \(\Delta NMC\) có: \(AK//MC\text{ (}AK//BC;M\in BC)\)

\(\Rightarrow\dfrac{AN}{NM}=\dfrac{AK}{MC}\) (hệ quả đli Talet) (1)

Xét \(\Delta NMB\) có: \(AG//MB\text{ (}AG//BC;M\in BC)\)

\(\Rightarrow\dfrac{AN}{NM}=\dfrac{AG}{MB}\) (hệ quả đli Talet) (2)

Từ (1) và (2) \(\Rightarrow\dfrac{AK}{MC}=\dfrac{AG}{MB}\)

Mà \(MB=MC\) (vì M là trung điểm BC) nên \(AK=AG\) (3)

Xét \(\Delta BDC\) có: \(AK//BC\Rightarrow \dfrac{AD}{BD}=\dfrac{AK}{BC}\) (hệ quả đli Talet) (4)

Xét \(\Delta CEB\) có: \(AG//BC\Rightarrow \dfrac{AE}{EC}=\dfrac{AG}{BC}\) (hệ quả đli Talet) (5)

Từ (3), (4) và (5) \(\Rightarrow\dfrac{AD}{BD}=\dfrac{AE}{EC}\Rightarrow\dfrac{AD}{AD+BD}=\dfrac{AE}{AE+EC}\)

\(\Rightarrow\dfrac{AD}{AB}=\dfrac{AE}{AC}\)

Xét \(\Delta ABC\) có: \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\) (cmt) \(\Rightarrow DE//BC\) (đli Talet đảo)

\(\rightarrow\) Chọn C. Cả A và B đều đúng

$Toru$

15 tháng 6 2024

15 tháng 6 2024

Mình nghĩ là bằng nhau.

4
456
CTVHS
15 tháng 6 2024

`060° = 60°`nhé

AH
Akai Haruma
Giáo viên
15 tháng 6 2024

Lời giải:

$A=a^3+b^3+c^3-3abc=(a^3+b^3)-3abc+c^3$

$=(a+b)^3-3ab(a+b)-3abc+c^3$

$=[(a+b)^3+c^3]-[3ab(a+b)+3abc]$

$=(a+b+c)[(a+b)^2-(a+b)c+c^2]-3ab(a+b+c)$

$=(a+b+c)[(a+b)^2-(a+b)c+c^2-2ab]$

$=(a+b+c)(a^2+b^2+c^2-ab-bc-ac)$

DT
15 tháng 6 2024

Bạn xem lại câu A nhé dãy A toàn các số hạng chia hết cho 3 mà số cuối 2023 lại không chia hết cho 3, dãy A không tuân theo quy luật nào cả không thể tính được bạn nhé

H = 2012.3+2012.4+...+2012.2011

= 2012.(3+4+...+2011)

Xét riêng: B=3+4+...+2011

Số số hạng dãy trên:

  (2011-3):1+1=2009 (số hạng)

Tổng dãy B là:

  (2011+3).2009:2=2023063

Do vậy: H = 2012.2023063 = 4070402756

15 tháng 6 2024

Mình nghĩ bạn chép sai phần A của câu hỏi rồi vì mỗi số hạng đều chia hết cho 3 nên xin phép sửa nhé!

\(A=3+6+9+...+2022\)

Số số hạng của biểu thức A là:

\(\left(2022-3\right):3+1=674\) (số)

\(\Rightarrow A=\left(2022+3\right)\cdot674:2\)

\(\Rightarrow A=682425\)

Vậy \(\Rightarrow A=682425\)

 

\(H=2012\cdot3+2012\cdot4+...+2012\cdot2011\)

\(\Rightarrow H=2012\cdot\left(3+4+...+2011\right)\)

Đặt \(B=3+4+...+2011\)

Số số hạng của biểu thức B là:

\(\left(2011-3\right):1+1=2009\) (số)

\(\Rightarrow B=\left(2011+3\right)\cdot2009:2\)

\(\Rightarrow B=2023063\)

Thay \(B=2023063\) vào H được:

\(H=2012\cdot2023063\)

\(\Rightarrow H=4070402756\)

Vậy \(H=4070402756\)

4
456
CTVHS
22 tháng 6 2024

\(A=3+6+9+...+2023\)

\(A=\left(2023-6\right)\div3+1=\dfrac{2020}{3}\rightarrow\) Đề sai.

\(B=2012.3+2012.4+...+2012.2011\)

\(B=2012.\left(3+4+...+2011\right)\)

Số số hạng:\(\left(2011-3\right)\div1+1=2009\) (số hạng)

Tổng : \(\left(2011+3\right).2009:2=2023063\)

Thay vào B , ta có:

\(B=2012.2023063=470402756\)

 

 

1: BC=BH+CH=4+9=13(cm)

Xét ΔHAB vuông tại H và ΔACB vuông tại A có

\(\widehat{HBA}\) chung

Do đó: ΔHAB~ΔACB

=>\(\dfrac{BH}{BA}=\dfrac{BA}{BC}\)

=>\(BA^2=BH\cdot BC=4\cdot13=52\)

=>\(BA=\sqrt{52}=2\sqrt{13}\left(cm\right)\)

ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC^2=13^2-\left(2\sqrt{13}\right)^2=117\)

=>\(AC=\sqrt{117}=3\sqrt{13}\left(cm\right)\)

2: ΔHAB~ΔACB

=>\(\dfrac{HA}{AC}=\dfrac{AB}{CB}\)

=>\(HA=\dfrac{AB\cdot AC}{BC}=\dfrac{2\sqrt{13}\cdot3\sqrt{13}}{13}=6\left(cm\right)\)

Xét tứ giác AKHE có \(\widehat{AKH}=\widehat{AEH}=\widehat{KAE}=90^0\)

nên AKHE là hình chữ nhật

=>AH=KE

=>KE=6(cm)

3: Xét ΔAKH vuông tại K và ΔAHB vuông tại H có

\(\widehat{HAB}\) chung

Do đó: ΔAKH~ΔAHB

=>\(\dfrac{AK}{AH}=\dfrac{AH}{AB}\)

=>\(AH^2=AK\cdot AB\left(1\right)\)

Xét ΔAEH vuông tại E và ΔAHC vuông tại H có

\(\widehat{EAH}\) chung

Do đó: ΔAEH~ΔAHC

=>\(\dfrac{AE}{AH}=\dfrac{AH}{AC}\)

=>\(AH^2=AE\cdot AC\left(2\right)\)

Từ (1),(2) suy ra \(AK\cdot AB=AE\cdot AC\)

=>\(\dfrac{AK}{AC}=\dfrac{AE}{AB}\)

Xét ΔAKE vuông tại A và ΔACB vuông tại A có

\(\dfrac{AK}{AC}=\dfrac{AE}{AB}\)

Do đó: ΔAKE~ΔACB

4: ta có: ΔABC vuông tại A

mà AI là đường trung tuyến

nên IA=IC

=>ΔIAC cân tại I

=>\(\widehat{IAC}=\widehat{ICA}\)

ΔAKE~ΔACB

=>\(\widehat{AEK}=\widehat{ABC}\)

Ta có: \(\widehat{AEK}+\widehat{IAC}=\widehat{ABC}+\widehat{ACB}=90^0\)

=>EK\(\perp\)AI tại N

15 tháng 6 2024
Bài giải:

1. Tính AB, AC:

  • Áp dụng định lý Pitago trong tam giác vuông AHB:
    • AB² = AH² + HB²
    • AH² = AB² - HB²
  • Áp dụng định lý Pitago trong tam giác vuông AHC:
    • AC² = AH² + HC²
    • AH² = AC² - HC²
  • Từ hai phương trình trên, ta có: AB² - HB² = AC² - HC²
  • Suy ra: AB² = AC² - HC² + HB²
  • Thay số: AB² = AC² - 9² + 4² = AC² - 65
  • Áp dụng định lý Pitago trong tam giác vuông ABC:
    • BC² = AB² + AC²
    • BC² = (AC² - 65) + AC² = 2AC² - 65
  • Thay BC = HB + HC = 4 + 9 = 13
    • 13² = 2AC² - 65
    • 2AC² = 13² + 65 = 224
    • AC² = 112
    • AC = √112 = 4√7 cm
  • Thay AC vào phương trình AB² = AC² - 65:
    • AB² = (4√7)² - 65 = 112 - 65 = 47
    • AB = √47 cm

2. Tính KE:

  • Áp dụng định lý Pitago trong tam giác vuông AKE:
    • KE² = AK² + AE²
  • Áp dụng định lý Pitago trong tam giác vuông AHB:
    • AK² = AH² - HK²
  • Áp dụng định lý Pitago trong tam giác vuông AHC:
    • AE² = AH² - HE²
  • Thay vào phương trình KE²:
    • KE² = (AH² - HK²) + (AH² - HE²) = 2AH² - (HK² + HE²)
  • Ta có: HK + HE = BC = 13 cm
  • Áp dụng định lý Pitago trong tam giác vuông HKE:
    • KE² = HK² + HE² = (HK + HE)² - 2HK.HE = 13² - 2HK.HE
  • Suy ra: 2AH² - (HK² + HE²) = 13² - 2HK.HE
  • 2AH² = 13² + 2HK.HE
  • AH² = (13² + 2HK.HE) / 2
  • Thay AH² = AB² - HB²:
    • AB² - HB² = (13² + 2HK.HE) / 2
    • 2(AB² - HB²) = 13² + 2HK.HE
    • 2HK.HE = 2(AB² - HB²) - 13²
    • HK.HE = (AB² - HB²) - 13²/2
    • HK.HE = (47 - 4²) - 13²/2 = -65/2
  • Vì HK và HE đều dương nên HK.HE = -65/2 là vô lý.
  • Vậy, không thể tính KE bằng cách này.

3. Chứng minh AB.AK = AE.AC; AKE ~ ACB:

  • Chứng minh AB.AK = AE.AC:
    • Xét tam giác vuông AHB và tam giác vuông AHC, ta có:
      • Góc BAH = Góc CAH (cùng bằng 90 độ)
      • Góc ABH = Góc ACH (cùng phụ với góc BAH)
    • Suy ra tam giác AHB đồng dạng với tam giác AHC (g-g)
    • Do đó: AB/AC = AH/AH = 1
    • Suy ra: AB = AC
    • Xét tam giác vuông AKE và tam giác vuông ACB, ta có:
      • Góc KAE = Góc CAB (cùng bằng 90 độ)
      • Góc AKE = Góc ACB (cùng phụ với góc KAE)
    • Suy ra tam giác AKE đồng dạng với tam giác ACB (g-g)
    • Do đó: AK/AC = AE/AB
    • Suy ra: AB.AK = AE.AC
  • Chứng minh AKE ~ ACB:
    • Xét tam giác vuông AKE và tam giác vuông ACB, ta có:
      • Góc KAE = Góc CAB (cùng bằng 90 độ)
      • Góc AKE = Góc ACB (cùng phụ với góc KAE)
    • Suy ra tam giác AKE đồng dạng với tam giác ACB (g-g)

4. Chứng minh AI vuông góc KE tại N:

  • Xét tam giác ABC:
    • I là trung điểm của BC nên AI là đường trung tuyến của tam giác ABC.
  • Xét tam giác AKE:
    • N là giao điểm của AI và KE nên N là trọng tâm của tam giác AKE.
  • Theo tính chất trọng tâm của tam giác:
    • Trọng tâm của tam giác cách mỗi đỉnh một khoảng bằng 2/3 độ dài đường trung tuyến đi qua đỉnh đó.
    • Do đó: AN = 2/3 AI
  • Xét tam giác vuông AHI:
    • AI là đường trung tuyến của tam giác vuông AHI nên AI = 1/2 HI.
  • Suy ra:
    • AN = 2/3 AI = 2/3 * (1/2 HI) = 1/3 HI
    • Do đó: IN = AI - AN = 1/2 HI - 1/3 HI = 1/6 HI
  • Xét tam giác vuông HKE:
    • N là trung điểm của KE nên HN là đường trung tuyến của tam giác vuông HKE.
  • Theo tính chất đường trung tuyến của tam giác vuông:
    • Đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền.
    • Do đó: HN = 1/2 KE
  • Suy ra:
    • IN = 1/6 HI = 1/2 HN
    • Do đó: HN = 3IN
  • Xét tam giác HIN:
    • HN = 3IN nên tam giác HIN vuông tại I (định lý đảo của định lý Pytago).
  • Kết luận:
    • AI vuông góc KE tại N.

Lưu ý:

  • Trong bài toán này, không thể tính KE bằng cách sử dụng định lý Pitago trong tam giác vuông HKE vì HK.HE là một số âm.
  • Việc chứng minh AB.AK = AE.AC và AKE ~ ACB là cần thiết để chứng minh AI vuông góc KE tại N.
  • Việc chứng minh AI vuông góc KE tại N là một ứng dụng của tính chất trọng tâm của tam giác và tính chất đường trung tuyến của tam giác vuông.
  •