giúp mik nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)64^x:16^x=256\\ \Rightarrow\left(2^6\right)^x:\left(2^4\right)^x=256\\ \Rightarrow2^{6x}:2^{4x}=256\\ \Rightarrow2^{6x-4x}=2^8\\ \Rightarrow2^{2x}=2^8\\ \Rightarrow2x=8\\ \Rightarrow x=\dfrac{8}{2}=4\\ b)\dfrac{-2401}{7^x}=-7\\ \Rightarrow7^x=\dfrac{-2401}{-7}\\ \Rightarrow7^x=343\\ \Rightarrow7^x=7^3\\ \Rightarrow x=3\\ c)\dfrac{625}{\left(-5\right)^x}=25\\ \Rightarrow\left(-5\right)^x=\dfrac{625}{25}\\ \Rightarrow\left(-5\right)^x=25\\ \Rightarrow\left(-5\right)^x=\left(-5\right)^2\\ \Rightarrow x=2\)
Bài 9:
Thể tích của một hình lập phương là:
\(1\cdot1\cdot1=1\) (đvtt)
Thể tích của hình hộp chữ nhật là:
\(12\cdot6\cdot5=360\) (đvtt)
Số hình lập phương là:
\(360:1=360\) (hình)
Bài 6:
Chiều dài của hình đó là:
\(1\times4=4\)
Chiều rộng của hình đó là:
\(1\times2=2\)
Chiều cao của hình đó là:
\(1\times2=2\)
Hình đó có số đơn vị diện tích là:
\(2\times\left(2+4\right)\times2+2\times2\times4=40\) (đvdt)
Hình đó có số đơn vị thể tích là:
\(4\times2\times2=16\left(đvtt\right)\)
a: \(A=2xy^2\cdot\left(\dfrac{1}{2}x^2y^2x\right)\)
\(=2\cdot\dfrac{1}{2}\cdot xy^2\cdot x^3y^2=x^4y^4\)
b: Bậc là 8
c: \(A=x^4y^4\)
Hệ số là 1
Phần biến là \(x^4;y^4\)
d: Khi x=1 và y=-1 thì \(A=1^4\cdot\left(-1\right)^4=1\)
e: \(x^4>0\forall x\ne0;y^4>0\forall y\ne0\)
Do đó: \(x^4\cdot y^4>0\forall x,y\ne0\)
=>A luôn dương khi x,y đều khác 0
a)
\(A=2xy^2\cdot\left(\dfrac{1}{2}x^2y^2x\right)\\ =\left(2\cdot\dfrac{1}{2}\right)\cdot\left(x\cdot x^2\cdot x\right)\cdot\left(y^2\cdot y^2\right)\\ =x^4y^4\)
b) Bậc: 4 + 4 = 8
c) Hệ số là: 1
Phần biến là: `x^4y^4`
d) Thay x = 1 và y = -1 vào A ta có:
\(A=1^4\cdot\left(-1\right)^4=1\cdot1=1\)
e) Ta có: \(\left\{{}\begin{matrix}x^4>0\forall x>0\\y^4>0\forall y>0\end{matrix}\right.=>A=x^4y^4>0\cdot0=0\forall x,y>0\)
=> A luôn nhận giá trị nguyên khi x,y khác 0
Lời giải:
\(B=\frac{-3}{4}.\frac{-8}{9}.\frac{-15}{16}....\frac{-99}{100}\\
=-\frac{3.8.15...99}{4.9...100}\) (do $B$ có lẻ các thừa số)
\(=-\frac{(1.3)(2.4)(3.5)...(9.11)}{2^2.3^2.4^2...10^2}\)
\(=-\frac{(1.2.3...9)(3.4.5...11)}{(2.3....10)(2.3.4...10)}\\ =-\frac{1.2.3...9}{2.3.4...10}.\frac{3.4.5...11}{2.3.4...10}\\ =-\frac{1}{10}.\frac{11}{2}=\frac{-11}{20}< \frac{-11}{21}\)
b: \(\dfrac{2}{5}-\left(\dfrac{4}{3}+\dfrac{4}{5}\right)-\left(-\dfrac{1}{9}-0,4\right)+\dfrac{11}{9}\)
\(=\dfrac{2}{5}-\dfrac{4}{3}-\dfrac{4}{5}+\dfrac{1}{9}+\dfrac{2}{5}+\dfrac{11}{9}\)
\(=\left(\dfrac{2}{5}-\dfrac{4}{5}+\dfrac{2}{5}\right)+\left(-\dfrac{4}{3}+\dfrac{1}{9}+\dfrac{11}{9}\right)\)
\(=-\dfrac{4}{3}+\dfrac{12}{9}=0\)
c: \(\dfrac{11}{8}\cdot\left[\left(-\dfrac{5}{11}:\dfrac{13}{8}-\dfrac{5}{11}:\dfrac{13}{5}\right)+\dfrac{-6}{33}\right]+\dfrac{3}{4}\)
\(=\dfrac{11}{8}\cdot\left[-\dfrac{5}{11}\cdot\dfrac{8}{13}-\dfrac{5}{11}\cdot\dfrac{5}{13}+\dfrac{-2}{11}\right]+\dfrac{3}{4}\)
\(=\dfrac{11}{8}\cdot\left[-\dfrac{5}{11}\left(\dfrac{8}{13}+\dfrac{5}{13}\right)-\dfrac{2}{11}\right]+\dfrac{3}{4}\)
\(=\dfrac{11}{8}\cdot\dfrac{-7}{11}+\dfrac{3}{4}=-\dfrac{7}{8}+\dfrac{3}{4}=-\dfrac{1}{8}\)
a:\(\widehat{BAC}+\widehat{xAC}=180^0\)(hai góc kề bù)
=> \(\widehat{BAC}+70^0=180^0\)
=>\(\widehat{BAC}=110^0\)
Ta có: \(\widehat{BAC}+\widehat{ABD}=180^0\)
mà hai góc này là hai góc ở vị trí trong cùng phía
nên AC//BD
b: Vì AC//BD
nên \(\widehat{yCx}=\widehat{CDB}\)(hai góc đồng vị)
=>\(\widehat{yCx}=60^0\)
Ta có: \(\widehat{yCx}+\widehat{ACD}=180^0\)(hai góc kề bù)
=>\(\widehat{ACD}+60^0=180^0\)
=>\(\widehat{ACD}=120^0\)
Ta có: \(\widehat{BAC}+\widehat{ABD}=180^0\)(AC//BD)
=>\(\widehat{BAC}+70^0=180^0\)
=>\(\widehat{BAC}=110^0\)
e: \(\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}=\dfrac{x+1}{13}+\dfrac{x+1}{14}\)
=>\(\left(x+1\right)\left(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}\right)=\left(x+1\right)\left(\dfrac{1}{13}+\dfrac{1}{14}\right)\)
=>\(\left(x+1\right)\left(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\right)=0\)
=>x+1=0
=>x=-1
a: \(\dfrac{1}{2}\cdot2^n+4\cdot2^n=9\cdot5^n\)
=>\(2^n\cdot\left(\dfrac{1}{2}+4\right)=5^n\cdot9\)
=>\(2^n\cdot\dfrac{9}{2}=5^n\cdot9\)
=>\(2^{n-1}=5^n\)
=>\(n-1=n\cdot log_25\)
=>\(n\left(1-log_25\right)=1\)
=>\(n=\dfrac{1}{1-log_25}\)
\(a)\left(\dfrac{6}{7}+1\dfrac{1}{2}\right)^2\\ =\left(\dfrac{6}{7}+\dfrac{3}{2}\right)^2\\ =\left(\dfrac{12}{14}+\dfrac{21}{14}\right)^2\\ =\left(\dfrac{33}{14}\right)^2\\ =\dfrac{1089}{196}\\ b)\left(2\dfrac{1}{5}-1\dfrac{2}{3}\right)^3\\ =\left(\dfrac{11}{5}-\dfrac{5}{3}\right)^3\\ =\left(\dfrac{33}{15}-\dfrac{25}{15}\right)^3\\ =\left(\dfrac{8}{15}\right)^3\\ =\dfrac{512}{3375}\\ c)3^2+4\cdot\left(\dfrac{7}{9}\right)^0+\left[\left(-5\right)^2:\dfrac{1}{5}\right]:25\\ =9+4\cdot1+\left(5^2\cdot5\right):25\\ =13+5^3:5^2\\ =13+5\\ =18\)