có 2 vòi nước . Người ta mở vòi I cho nc chảy đầy 1 bể cạn rồi khóa lại và mở vòi thứ 2 cho nc chảy ra hết . thời gian sau lâu hơn thời gian trc 8h . nếu mở 2 vòi nc cùng 1 lúc thì bể đầy trong 30 h . hỏi vòi I pk chảy trong bao lâu ms đầy bể nếu ng ta khóa vòi thứ II
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Answer:
a. \(P=\left(\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right)\left(\frac{1-x}{\sqrt{2}}\right)^2\) ĐK: \(x\ge0;x\ne1\)
\(=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}.\frac{\left(1-x\right)^2}{2}\)
\(=\frac{-2\sqrt{x}}{\sqrt{x}+1}.\frac{x-1}{2}\)
\(=\frac{\sqrt{x}\left(1-x\right)}{\sqrt{x}+1}\)
\(=\frac{\sqrt{x}\left(1-\sqrt{x}\right)\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\)
\(=\sqrt{x}\left(1-\sqrt{x}\right)\)
b. Vì \(0< x< 1\Rightarrow\hept{\begin{cases}\sqrt{x}\ge0\\1-\sqrt{x}>0\end{cases}}\Rightarrow\sqrt{x}\left(1-\sqrt{x}\right)>0\)
Do vậy \(\sqrt{x}\left(1-\sqrt{x}\right)>0\)
c. \(P=\sqrt{x}\left(1-\sqrt{x}\right)\)
\(=-\left(\sqrt{x}\right)^2+\sqrt{x}\)
\(=-\left(x-2\sqrt{x}.\frac{1}{2}+\frac{1}{4}\right)+\frac{1}{4}\)
\(=-\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\forall x\)
Dấu "=" xảy ra khi \(\sqrt{x}-\frac{1}{2}=0\Rightarrow x=\frac{1}{4}\)
Đặt \(\sqrt{x-1}=a;\sqrt{x+1}=b\) \(\left(a;b\ge0;x\ge1\right)\)
\(\sqrt{\left(x-1\right)\left(x+1\right)}=\sqrt{x+1}+\sqrt{x-1}-x+4\)
<=> ab = a + b - x + 4
<=> 2ab = 2(a + b) - 2x + 8
<=> 2ab = 2(a + b) - a2 - b2 + 8
<=> (a + b)2 - 2(a + b) + 1 = 9
<=> (a + b - 1)2 = 9
<=> \(\orbr{\begin{cases}a+b=4\\a+b=-2\end{cases}}\Leftrightarrow a+b=4\)
\(\Leftrightarrow\sqrt{x+1}+\sqrt{x-1}=4\)
\(\Leftrightarrow\sqrt{x+1}=4-\sqrt{x-1}\)
\(\Leftrightarrow\hept{\begin{cases}x+1=x-1-8\sqrt{x-1}+16\\1\le x\le17\end{cases}}\Leftrightarrow\hept{\begin{cases}4\sqrt{x-1}=7\\1\le x\le17\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}16\left(x-1\right)=49\\1\le x\le17\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{65}{16}\\1\le x\le17\end{cases}}\Leftrightarrow x=\frac{65}{16}\left(tm\right)\)
ĐK : \(x>2009;y>2010;z>2011\)
PT <=> \(\frac{-4\sqrt{x-2009}+4}{x-2009}+\frac{-4\sqrt{y-2010}+4}{y-2010}+\frac{-4\sqrt{z-2011}+4}{z-2011}=-3\)
<=> \(\frac{\left(\sqrt{x-2009}-2\right)^2}{x-2009}+\frac{\left(\sqrt{y-2010}-2\right)^2}{y-2010}+\frac{\left(\sqrt{z-2011}-2\right)^2}{z-2011}=0\)
<=> \(\hept{\begin{cases}\sqrt{x-2009}-2=0\\\sqrt{y-2010}-2=0\\\sqrt{z-2011}-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2013\\y=2014\\z=2015\end{cases}}\)
Vậy phương trình có 1 nghiệm duy nhất (x;y;z) = (2013 ; 2014 ; 2015)
a) Xét phương trình thứ nhất, có \(\Delta_1=b^2-4ac\)
Xét phương trình thứ hai, có \(\Delta_2=b^2-4ca=b^2-4ac\)
Từ đó ta có \(\Delta_1=\Delta_2\), do đó, khi phương trình (1) có nghiệm \(\left(\Delta_1\ge0\right)\)thì \(\Delta_2\ge0\)dẫn đến phương trình (2) cũng có nghiệm và ngược lại.
Vậy 2 phương trình đã cho cùng có nghiệm hoặc cùng vô nghiệm.
b) Vì \(x_1,x_2\)là 2 nghiệm của phương trình (1) nên theo định lý Vi-ét, ta có \(x_1x_2=\frac{c}{a}\)
Tương tự, ta có \(x_1'x_2'=\frac{a}{c}\)
Từ đó \(x_1x_2+x_1'x_2'=\frac{c}{a}+\frac{a}{c}\)
Nếu \(\hept{\begin{cases}a>0\\c>0\end{cases}}\)hay \(\hept{\begin{cases}a< 0\\c< 0\end{cases}}\)thì \(\hept{\begin{cases}\frac{c}{a}>0\\\frac{a}{c}>0\end{cases}}\), khi đó có thể áp dụng bất đẳ thức Cô-si cho 2 số dương \(\frac{c}{a}\)và \(\frac{a}{c}\):
\(\frac{c}{a}+\frac{a}{c}\ge2\sqrt{\frac{c}{a}.\frac{a}{c}}=2\), dẫn đến \(x_1x_2+x_1'x_2'\ge2\)
Nhưng nếu \(\hept{\begin{cases}a>0\\c< 0\end{cases}}\)hay \(\hept{\begin{cases}a< 0\\c>0\end{cases}}\)thì \(\hept{\begin{cases}\frac{c}{a}< 0\\\frac{a}{c}< 0\end{cases}}\),như vậy \(\frac{c}{a}+\frac{a}{c}< 0< 2\)dẫn đến \(x_1x_2+x_1'x_2'< 2\)
Như vậy không phải trong mọi trường hợp thì \(x_1x_2+x_1'x_2'>2\)
jjjjjjjjjjjjjjjjjjjjjjjjjj