Đố vui: Cho một quả bóng nhựa hình cầu chứa đầy nước nằm vừa đủ trong một can hình trụ có bán kính đáy \(r\) và chiều cao \(2r\)(tức là hai đáy can và phần bên trong can đều tiếp xúc với quả bóng). Người ta đổ hết nước trong quả bóng nhựa đó vào một cái bình hình nón có cùng bán kính đáy và chiều cao với can hình trụ nói trên. Hỏi lượng nước đó chiếm bao nhiêu phần thể tích hình trụ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi bán kính hình tròn lớn r ; bán kính hình tròn nhỏ : r1
Diện tích vành khuyên : S = \(r^2.\pi-r_1^2.\pi=\pi\left(r^2-r_1^2\right)\)
Lại có diện tích hình tròn (A;AB) S1 = AB2.\(\pi\) = (BO2 - AO2).\(\pi=\left(r^2-r_1^2\right).\pi\)
=> S = S1 (đpcm)
Đường trỏn nhỏ bán kính OA, đường tròn lớn bán kính OB
Mặt khác do BC là tiếp tuyến đường tròn nhỏ
\(\Rightarrow OA\perp BC\)
\(\Rightarrow A\) là trung điểm BC
\(\Rightarrow AB^2=OB^2-OA^2\)
Diện tích hình vành khuyên:
\(S_1=S_{\left(O;OB\right)}-S_{\left(O;OA\right)}=\pi OB^2-\pi.OA^2=\pi\left(OB^2-OA^2\right)\)
\(S_{\left(A;AB\right)}=\pi.AB^2=\pi\left(OB^2-OA^2\right)\)
\(\Rightarrow S_1=S_{\left(A;AB\right)}\) (đpcm)
Do \(x^2+2mx+n=0\) có nghiệm \(\Rightarrow m^2-n\ge0\)
Xét pt: \(x^2+2\left(k+\dfrac{1}{k}\right)mx+n\left(k+\dfrac{1}{k}\right)^2=0\)
\(\Delta'=\left(k+\dfrac{1}{k}\right)^2m^2-n\left(k+\dfrac{1}{k}\right)^2=\left(k+\dfrac{1}{k}\right)^2\left(m^2-n\right)\ge0\) với mọi k
\(\Rightarrow\)Pt đã cho có nghiệm
xét m=0 thay vào ptr đã cho được x=-1 (loại)
xét m khác 0
ptr đã cho là ptr bậc 2 có 2 nghiệm phân biệt khi ∆ >0
<=> (m2+m+1)2-4m(m+1) >0
<=> (m2+m)2+2(m2+m) +1 -4(m2+m)>0
<=> (m2+m)2-2(m2+m)+1>0
<=> (m2+m-1)2>0
<=> m2+m-1 khác 0
<=> m khác \(\frac{-1\pm\sqrt{5}}{2}\)
Gọi x1, x2 là hai nghiệm phân biệt của ptr
=> \(\hept{\begin{cases}x1+x2=\frac{m^2+m+1}{m}\\x1.x2=\frac{m+1}{m}\end{cases}}\)(1)
Vì ptr đã cho có hai nghiệm khác -1 nên
{x1 # -1 và x2 #-1
=> (x1+1)(x2+1) # 0 và (x1+1) + (x2+1) # 0
=> x1.x2 +x1+x2+1 khác 0 và x1 +x2 +2 khác 0
thay (1) vào
Với \(m=0\) không thỏa mãn
Với \(m\ne0\) pt có 2 nghiệm pb khác -1 khi:
\(\left\{{}\begin{matrix}\Delta=\left(m^2+m+1\right)^2-4m\left(m+1\right)>0\\m+\left(m^2+m+1\right)+m+1\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2+m\right)^2-2\left(m^2+m\right)+1>0\\m^2+3m+2\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2+m-1\right)^2>0\\m^2+3m+2\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^2+m-1\ne0\\m^2+3m+2\ne0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m\ne\dfrac{-1\pm\sqrt{5}}{2}\\m\ne-2\\m\ne-1;m\ne0\end{matrix}\right.\)
????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????
Đặt x+y=a; x-y=b
Hệ \(\Leftrightarrow\left\{{}\begin{matrix}3a-2b=9\\2a+b=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3a-2b=9\\4a+2b=-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3a-2b=9\\7a=7\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3-2b=9\\a=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b=-3\\a=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-y=-3\\x+y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x=-2\\x+y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\-1+y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=2\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x+5y=9\\3x+y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+5y=9\\15x+5y=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}14x=-14\\y=\dfrac{9-x}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=2\end{matrix}\right.\)
.1 . Vẽ vòng tâm \(O\), bán kính \(R\). Gỉa sử \(R=1\)
2 . Từ 1 điểm \(B\)trên vòng tròn kẻ đường thẳng qua \(O\)và \(B\)
3 . Vẽ điểm \(D\)của \(OB\)
4 . Kẻ đường thăng vuông góc OB tại O , cắt vòng tròn qua hai điểm tại P
5 . Vẽ phân giác cuả ODP , cắt OP tại N
6 . Kẻ đường thẳng vuông góc với OP tại N cắt vòng tròn hai điểm tại P
Cái trên là ví dụ nha
Hiện tại thì không thể / chưa tìm ra cách để vẽ hình 7 cạnh chính xác như đề bài trên, tương tự với các hình 9,13,14,18,19... cạnh đều. Có thể trong tương lai sẽ có cách để vẽ (ví dụ như một thiên tài như ông Gauss được sinh ra) còn bây giờ thì vẽ trên máy tính thôi :))
Trường hợp 1 nếu góc B < 90o => BC > AC (khác đề)
Trường hợp 2 nếu góc B = 90 độ (khác đề)
Trường hợp 3 nếu góc B > 90o => AC > BC ( đúng)
Nên ta sẽ đi xét trường hợp 3 : B > 90o ( bạn phải vẽ B > 90o nhé) HB = MH - BM
=> HB = a - (x+1)/2
=> HB^2 = (a - (x+1)/2)^2 HC = HB + BC
=> HC = a - x/2 + x
=> HC^2 = (a + (x+1)/2)^2
Ta có AH^2 = AC^2 - HC^2 AH^2 = AB^2 - HB^2
=> AC^2 - HC^2 = AB^2 - HB^2
<=> (x + 2)^2 - (a+ (x+1)/2)^2 = x^2 - (a - (x+1)/2)^2
<=> x^2 - 4x - 4 - a^2 - ax - a - (x^2+2x+1)/4 = x^2 - a^2 + ax + a - (x^2+2x+1)/4
<=> 2ax + 2a - 4x - 4 = 0
<=> 2a(x+1) - 4(x+1) = 0
<=> (x + 1).2(a - 2) = 0
<=> x = -1 hoặc a = 2 hay AB = -1 hoặc HM = 2
Tham khảo
Đặt AB = x , BC = x + 1 , AC = x + 2 , MH = a Xét 3 trường hợp
Trường hợp 1 nếu góc B < 90o => BC > AC (khác đề)
Trường hợp 2 nếu góc B = 90 độ (khác đề)
Trường hợp 3 nếu góc B > 90o => AC > BC ( đúng)
Nên ta sẽ đi xét trường hợp 3 : B > 90o ( bạn phải vẽ B > 90o nhé) HB = MH - BM
=> HB = a - (x+1)/2
=> HB^2 = (a - (x+1)/2)^2 HC = HB + BC
=> HC = a - x/2 + x
=> HC^2 = (a + (x+1)/2)^2
Ta có AH^2 = AC^2 - HC^2 AH^2 = AB^2 - HB^2
=> AC^2 - HC^2 = AB^2 - HB^2
<=> (x + 2)^2 - (a+ (x+1)/2)^2 = x^2 - (a - (x+1)/2)^2
<=> x^2 - 4x - 4 - a^2 - ax - a - (x^2+2x+1)/4 = x^2 - a^2 + ax + a - (x^2+2x+1)/4
<=> 2ax + 2a - 4x - 4 = 0
<=> 2a(x+1) - 4(x+1) = 0
<=> (x + 1).2(a - 2) = 0
<=> x = -1 hoặc a = 2 hay AB = -1 hoặc HM = 2