Giải PT :
√(x^2 +2x +3) + √( x^2 +x +2) = 2x+2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có (ac+bd)2+(ad-bc)2=(ac)2+2abcd+(bd)2+(ad)2-2abcd+(bc)2
=(ac)2+(bd)2+(ad)2+(bc)2
=a2(c2+d2)+b2(c2+d2)
=(a2+b2)(c2+d2) (đpcm)
HT
Gọi \(x,y\)lần lượt là chiều dài và chiều rộng của thửa ruộng. \(\left(x\ge y>0\right)\)
Vì chu vi hình chữ nhật bằng 284m nên ta có pt \(2\left(x+y\right)=284\)\(\Leftrightarrow x+y=142\)(1)
Mặt khác đường chéo của hình chữ nhật dài 10m nên ta có pt \(x^2+y^2=10^2=100\)(2)
Từ (1) và (2) ta có hệ phương trình \(\hept{\begin{cases}x+y=142\\x^2+y^2=100\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=142\\\left(x+y\right)^2-2xy=100\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=142\\142^2-2xy=100\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=142\\xy=10032\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=142-x\\x\left(142-x\right)=10032\end{cases}}\Leftrightarrow\hept{\begin{cases}y=142-x\\x^2-142x+10032=0\left(\cdot\right)\end{cases}}\)
Mà \(x^2-142x+10032=\left(x^2-2x.71+71^2\right)+4991=\left(x-71\right)^2+4991\ge4991>0\)
Vậy \(\left(\cdot\right)\)vô nghiệm, từ đó không tìm được chiều dài, chiều rộng dẫn đến không tìm được diện tích hình chữ nhật theo yêu cầu.
Trả lời:
a, \(B=\left(\frac{x+\sqrt{x}-1}{x\sqrt{x}-1}-\frac{\sqrt{x}+1}{x+\sqrt{x}+1}\right):\frac{1}{\sqrt{x}-1}\left(ĐK:x>0;x\ne1\right)\)
\(=\left(\frac{x+\sqrt{x}-1}{\left(\sqrt{x}\right)^3-1}-\frac{\sqrt{x}+1}{x+\sqrt{x}+1}\right):\frac{1}{\sqrt{x}-1}\)
\(=\left(\frac{x+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\frac{\sqrt{x}+1}{x+\sqrt{x}+1}\right).\left(\sqrt{x}-1\right)\)
\(=\left(\frac{x+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right).\left(\sqrt{x}-1\right)\)
\(=\frac{x+\sqrt{x}-1-\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\left(\sqrt{x}-1\right)\)
\(=\frac{x+\sqrt{x}-1-\left(x-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\left(\sqrt{x}-1\right)\)
\(=\frac{x+\sqrt{x}-1-x+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\left(\sqrt{x}-1\right)\)
\(=\frac{\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\left(\sqrt{x}-1\right)=\frac{\sqrt{x}}{x+\sqrt{x}+1}\)
b, \(B< \frac{1}{3}\Leftrightarrow\frac{\sqrt{x}}{x+\sqrt{x}+1}< \frac{1}{3}\)
\(\Leftrightarrow\frac{\sqrt{x}}{x+\sqrt{x}+1}-\frac{1}{3}< 0\)
\(\Leftrightarrow\frac{3\sqrt{x}}{3\left(x+\sqrt{x}+1\right)}-\frac{x+\sqrt{x}+1}{3\left(x+\sqrt{x}+1\right)}< 0\)
\(\Leftrightarrow\frac{3\sqrt{x}-x-\sqrt{x}-1}{3\left(x+\sqrt{x}+1\right)}< 0\)
\(\Leftrightarrow\frac{-x+2\sqrt{x}-1}{3\left(x+\sqrt{x}+1\right)}< 0\)
\(\Leftrightarrow\frac{-\left(x-2\sqrt{x}+1\right)}{3\left(x+\sqrt{x}+1\right)}< 0\)
\(\Leftrightarrow\frac{-\left(\sqrt{x}-1\right)^2}{3\left(x+\sqrt{x}+1\right)}< 0\)
Vì \(-\left(\sqrt{x}-1\right)^2< 0\) với mọi \(x>0;x\ne1\)
\(3\left(x+\sqrt{x}+1\right)>0\) với mọi \(x>0;x\ne1\)
\(\Rightarrow\frac{-\left(\sqrt{x}-1\right)^2}{3\left(x+\sqrt{x}+1\right)}< 0\) luôn đúng với mọi \(x>0;x\ne1\)
Vậy \(B< \frac{1}{3}\)
c, \(B=\frac{1}{2\sqrt{x}+1}\Leftrightarrow\frac{\sqrt{x}}{x+\sqrt{x}+1}=\frac{1}{2\sqrt{x}+1}\)
\(\Leftrightarrow\sqrt{x}\left(2\sqrt{x}+1\right)=x+\sqrt{x}+1\)
\(\Leftrightarrow2x+\sqrt{x}=x+\sqrt{x}+1\)
\(\Leftrightarrow x=1\) (tm)
Vậy x = 1 là giá trị cần tìm
2 3 4 x y
Áp dụng công thức tính diện tích và lập tỉ số ta có:
\(\hept{\begin{cases}\frac{x}{y+3}=\frac{2}{4}=\frac{1}{2}\\\frac{y}{x+2}=\frac{3}{4}\end{cases}}\Leftrightarrow\hept{\begin{cases}2x-y=3\\3x-4y=-6\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{18}{5}\\y=\frac{21}{5}\end{cases}}\)
Vậy phần diện tích cần tìm là \(x+y=\frac{18}{5}+\frac{21}{5}=\frac{39}{5}\)
TL :
KQ PT này là \(\sqrt{3x2}^5\)
Do căn bậc ko thuộc kq tuyệt đối của PT , nên \(PT\in\varnothing\)
Nên KQ :
\(PT=0\)
https://h.vn/cau-hoi/giai-ptsqrtx22x3sqrtx2x22x2.4647589959420
Bạn có thể tham khảo bài làm của mk
.