Cho $\triangle A B C$ có $A B<A C$. Tia phân giác của $\widehat{A}$ cắt đường thẳng vuông góc với $B C$ tại trung điểm của $B C$ ở $D$. Gọi $H$ và $K$ là chân các đường vuông góc kẻ từ $D$ đến các đường thẳng $A B$, $A C$. Chứng minh $B H=C K$.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Gọi �D là giao điểm của ��AG và ��⇒��=��BC⇒DB=DC.
Ta có ��=23��BG=32BE; ��=23��CG=32CF (tính chất trọng tâm).
Vì ��=��BE=CF nên ��=��⇒△���BG=CG⇒△BCG cân tại �G
⇒���^=���^⇒GCB=GBC
Xét △���△BFC và △���△CEB có ��=��CF=BE (giả thiết);
���^=���^GCB=GBC (chứng minh trên);
��BC là cạnh chung.
Do đó △���=△���△BFC=△CEB (c.g.c)
⇒���^=���^⇒FBC=ECB (hai góc tưong ứng)
⇒△���⇒△ABC cân tại �⇒��=��A⇒AB=AC.
Từ đó suy ra △���=△���△ABD=△ACD (c.c.c)
⇒���^=���^⇒ADB=ADC. (hai góc tương ứng)
Mà ���^+���^=180∘⇒���^=���^=90∘⇒��⊥��ADB+ADC=180∘⇒ADB=ADC=90∘⇒AD⊥BC hay ��⊥��AG⊥BC.
a)�)
Ta có : BE là đường trung tuyến cạnh ACTa có : BE là đường trung tuyến cạnh AC
và : CF là đường trung tuyến cạnh ABvà : CF là đường trung tuyến cạnh AB
⇒AB=AC⇒ΔABCcân tạiA⇒��=��⇒Δ���cân tại�
Nối AGNối AG
Xét ΔABC có BE và CF là 2 đường trung tuyến cắt nhau tại GXét ΔABC có BE và CF là 2 đường trung tuyến cắt nhau tại G
⇒G là trọng tâm ΔABC⇒G là trọng tâm ΔABC
và : AG là đường trung tuyến ứng với cạnh BCvà : AG là đường trung tuyến ứng với cạnh BC
ΔABC cân tại A nên đường trung tuyến AG cũng là đường cao => AG ⊥ BCΔABC cân tại A nên đường trung tuyến AG cũng là đường cao => AG ⊥ BC



a) Ta có DM=DG \Rightarrow GM=2 GDDM=DG⇒GM=2GD.
Ta lại có GG là giao điểm của BDBD và CE \Rightarrow GCE⇒G là trọng tâm của tam giác ABCABC
\Rightarrow BG=2 GD⇒BG=2GD.
Suy ra BG=GMBG=GM.
Chứng minh tương tự ta được CG=GNCG=GN.
b) Xét tam giác GMNGMN và tam giác GBCGBC có GM=GBGM=GB (chứng minh trên);
\widehat{MGN}=\widehat{BGC}MGN=BGC (hai góc đối đỉnh);
GN=GCGN=GC (chứng minh trên).
Do đó \triangle GMN=\triangle GBC△GMN=△GBC (c.g.c)
\Rightarrow MN=BC⇒MN=BC (hai cạnh tương ứng).
Theo chứng minh trên \triangle GMN=\triangle GBC \Rightarrow \widehat{NMG}=\widehat{CBG}△GMN=△GBC⇒NMG=CBG (hai góc tương ứng).
Mà \widehat{NMG}NMG và \widehat{CBG}CBG ờ vị trí so le trong nên MNMN // BCBC.
a) Ta có ��=��⇒��=2��DM=DG⇒GM=2GD.
Ta lại có �G là giao điểm của ��BD và ��⇒�CE⇒G là trọng tâm của tam giác ���ABC
⇒��=2��⇒BG=2GD.
Suy ra ��=��BG=GM.
Chứng minh tương tự ta được ��=��CG=GN.
b) Xét tam giác ���GMN và tam giác ���GBC có ��=��GM=GB (chứng minh trên);
���^=���^MGN=BGC (hai góc đối đỉnh);
��=��GN=GC (chứng minh trên).
Do đó △���=△���△GMN=△GBC (c.g.c)
⇒��=��⇒MN=BC (hai cạnh tương ứng).
Theo chứng minh trên △���=△���⇒���^=���^△GMN=△GBC⇒NMG=CBG (hai góc tương ứng).
Mà ���^NMG và ���^CBG ờ vị trí so le trong nên ��MN // ��BC.

Ta có BF = 2BE (giả thiết).
=>BE = EF.
Mà BE = 2ED nên EF = 2ED.
Do đó ED = DF.
=>D là trung điểm của EF.
Khi đó CD là đường trung tuyến của ∆CEF.
Vì K là trung điểm CF (giả thiết).
Nên EK cũng là đường trung tuyến của ∆CEF.
∆CEF có hai đường trung tuyến CD và EK cắt nhau tại G.
Khi đó G là trọng tâm của ∆CEF.
Vì G là trọng tâm của ∆CEF nên GCDC=23����=23 và GKGE=12����=12 (tính chất trọng tâm).
Ta có GKGE=12����=12
Suy ra GEGK=2����=2.
Ta có BF = 2BE (giả thiết).
=>BE = EF.
Mà BE = 2ED nên EF = 2ED.
Do đó ED = DF.
=>D là trung điểm của EF.
Khi đó CD là đường trung tuyến của ∆CEF.
Vì K là trung điểm CF (giả thiết).
Nên EK cũng là đường trung tuyến của ∆CEF.
∆CEF có hai đường trung tuyến CD và EK cắt nhau tại G.
Khi đó G là trọng tâm của ∆CEF.
Vì G là trọng tâm của ∆CEF nên GCDC=23����=23 và GKGE=12����=12 (tính chất trọng tâm).
Ta có GKGE=12����=12
Suy ra GEGK=2����=2.

a) Xét tam giác ABDABD có CC là trung điểm của cạnh AD \Rightarrow BCAD⇒BC là trung tuyến của tam giác ABDABD.
Hơn nữa G \in BCG∈BC và GB=2 GC \Rightarrow GB=\dfrac{2}{3} BC \Rightarrow GGB=2GC⇒GB=32BC⇒G là trọng tâm tam giác ABDABD.
Lại có AEAE là đường trung tuyến của tam giác ABDABD nên A, \, G, \, EA,G,E thẳng hàng.
b) Ta có GG là trọng tâm tam giác ABD \Rightarrow DGABD⇒DG là đường trung tuyến của tam giác này.
Suy ra DGDG đi qua trung điểm của cạnh ABAB (điều phài chứng minh).
a) Xét tam giác ���ABD có �C là trung điểm của cạnh ��⇒��AD⇒BC là trung tuyến của tam giác ���ABD.
Hơn nữa �∈��G∈BC và ��=2��⇒��=23��⇒�GB=2GC⇒GB=32BC⇒G là trọng tâm tam giác ���ABD.
Lại có ��AE là đường trung tuyến của tam giác ���ABD nên �,�,�A,G,E thẳng hàng.
b) Ta có �G là trọng tâm tam giác ���⇒��ABD⇒DG là đường trung tuyến của tam giác này.
Suy ra ��DG đi qua trung điểm của cạnh ��AB (điều phài chứng minh).

a)Ta có:
AB = AC ( tam giác ABC cân tại A )
=> 1/2 AB = 1/2 AC hay AE = AD
Xét ΔABD và ΔACE có:
AB = AC(cmt)
góc A chung
AD = AE (cmt)
=> 2Δ bằng nhau
=> BD=CE
b) BD = CE ( cmt )
=> 2/3 BD = 2/3 CE hay GB = GC
=> ΔGBC cân tại G
c) GD+GE = 1/3CD = 1/3CE
Mà BD = CE (cmt)
=> 1/3 BD + 1/3 CE = 2/3 BD = BG
Gọi F là t/đ BC
=> BF = 1/2 BC
Xét tg BGF vuông tại F ( do tg ABC cân => AF vuông góc Bc ):
BG>BF(ch>cgv)
=> GD + GE> 1/2BC
a,�,
Do CE�� là đường trung tuyến (gt)
→E→� là trung điểm của AB��
Do BD�� là đường trung tuyến (gt)
→D→� là trung điểm của AC��
Có : AE=12AB��=12�� (Do E� là trung điểm của AB��)
Có : AD=12AC��=12�� (Do D� là trung điểm của AC��)
mà AB=AC��=�� (Do ΔABCΔ��� cân tại A�) →12AB=12AC→12��=12��
→AE=AD
Xét ΔADBΔ��� và ΔAECΔ��� có :
AE=AD��=�� (cmt)
AB=AC��=�� (Do ΔABCΔ��� cân tại A�)
ˆA�^ chung
→ΔADB=ΔAEC→Δ���=Δ��� (cạnh - góc - cạnh)
→BD=CE→��=�� (2 cạnh tương ứng)
và ˆABD=ˆACE���^=���^ (2 góc tương ứng)
Có : ˆABD+ˆGBC=ˆABC���^+���^=���^
Có : ˆACE+ˆGCB=ˆACB���^+���^=���^
mà ˆABD=ˆACE���^=���^ (cmt), ˆABC=ˆACB���^=���^ (Do ΔABCΔ��� cân tại A�)
→ˆGBC=ˆGCB→���^=���^
→ΔBGC→Δ��� cân tại G�
Vì G là trọng tâm tam giác ABC nên:
GD=12GB,GE=12GC��=12��,��=12��
Do đó GD+GE=12BG+12CG=12(BG+CG)��+��=12��+12��=12��+��.
Mặt khác: BG + CG > BC (bất đẳng thức trong tam giác GCB).
Suy ra GB+GE>12BC��+��>12�� (điều phải chứng minh).

Lời giải:
Gọi số cán bộ y tế của 3 đội lần lượt là $a,b,c$ (người)
Ta có: $a+b+c=37$
Vì số người tỉ lệ nghịch với số ngày hoàn thành công việc nên:
$5a=4b=6c$
Áp dụng tính chất dãy tỉ số bằng nhau:
$5a=4b=6c=\frac{a}{\frac{1}{5}}=\frac{b}{\frac{1}{4}}=\frac{c}{\frac{1}{6}}=\frac{a+b+c}{\frac{1}{5}+\frac{1}{4}+\frac{1}{6}}=\frac{37}{\frac{37}{60}}=60$
$\Rightarrow a=60:5=12; b=60:4=15; c=60:6=10$

Một công nhân hoàn thành công việc đó trong số ngày là:
12 x 16 = 192 ( ngày )
Để hoàn thành công việc đó trong 8 ngày cần số công nhân là:
192 : 8 = 24 ( công nhân )
Số công nhân cần bổ sung thêm là:
24 - 16 = 8 ( người)
Kết luận :...
Ta có �D thuộc phân giác của �^A;
��⊥��DH⊥AB; ��⊥��DK⊥AC ⇒��=��⇒DH=DK (tính chất tia phân giác của một góc).
Gọi �G là trung điểm của ��BC.
Xét △���△BGD và △���△CGD, có
���^=���^=90∘BGD=CGD=90∘ (��DG là trung trực của ��BC ),
��=��BG=CG (già thiết),
��DG là cạnh chung.
Do đó △���=△���△BGD=△CGD (hai cạnh góc vuông)
⇒��=��⇒BD=CD (hai cạnh tương ứng).
Xét △���△BHD và △���△CKD, có
���^=���^=90∘BHD=CKD=90∘ (giả thiết);
��=��DH=DK (chứng minh trên);
��=��BD=CD (chứng minh trên).
Do đó △���=△���△BHD=△CKD (cạnh huyền - cạnh góc vuông)
⇒��=��⇒BH=CK (hai cạnh tương ứng).
Ta có DD thuộc phân giác của \widehat{A}A;
D H \perp A BDH⊥AB; D K \perp A CDK⊥AC \Rightarrow D H=D K⇒DH=DK (tính chất tia phân giác của một góc).
Gọi GG là trung điểm của BCBC.
Xét \triangle B G D△BGD và \triangle C G D△CGD, có
\widehat{B G D}=\widehat{C G D}=90^{\circ}BGD=CGD=90∘ (DGDG là trung trực của B CBC ),
BG=CGBG=CG (già thiết),
DGDG là cạnh chung.
Do đó \triangle B G D=\triangle C G D△BGD=△CGD (hai cạnh góc vuông)
\Rightarrow B D=C D⇒BD=CD (hai cạnh tương ứng).
Xét \triangle B H D△BHD và \triangle C K D△CKD, có
\widehat{B H D}=\widehat{C K D}=90^{\circ}BHD=CKD=90∘ (giả thiết);
D H=D KDH=DK (chứng minh trên);
B D=C DBD=CD (chứng minh trên).
Do đó \triangle B H D=\triangle C K D△BHD=△CKD (cạnh huyền - cạnh góc vuông)
\Rightarrow B H=C K⇒BH=CK (hai cạnh tương ứng).