Đố vui: Một tam giác vuông có độ dài cạnh huyền là 10cm và độ dài đường cao ứng với cạnh huyền là 6cm. Tính diện tích tam giác vuông đó?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Công bố:
Ta cần chứng minh số có dạng \(224999...91000...09\)(n-2 cs 9 nằm giữa 4 và 1; n chữ số 0) đều là các số chính phương.
Thật vậy, ta có \(224999...91000...09=224999...91000...000+9=224999...90000...000+10^{n+1}+9\)
n-2 cs 9 n cs 0 n-2 cs 9 n+1 cs 0 n-2 cs 9 n+2 cs 0
\(=224999...9.10^{n+2}+10^{n+1}+9=\left(224000...00+999...9\right).10^{n+2}+10^{n+1}+9\)
n-2 cs 9 n-2 cs 0 n-2 cs 9
\(=\left(224.10^{n-2}+10^{n-2}-1\right).10^{n+2}+10^{n+1}+9=224.10^{2n}+10^{2n}-10^{n+2}+10^{n+1}+9\)\(=225.10^{2n}-100.10^n+10.10^n+9=\left(15.10^n\right)^2-90.10^n+9\)\(=\left(15.10^n\right)^2-2.15.10^n.3+3^2=\left(15.10^n-3\right)^2\)là số chính phương.
Vậy \(224999...91000...09\)(n-2 cs 9 nằm giữa 4 và 1; n chữ số 0) là số chính phương.
\(\Rightarrowđpcm\)
đặt \(A=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{101}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{102}\right)\)
\(A=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.....+\frac{1}{101}+\frac{1}{102}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+.....+\frac{1}{102}\right)\)
\(A=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.....+\frac{1}{101}+\frac{1}{102}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{51}\right)\)
\(A=\frac{1}{52}+\frac{1}{53}+\frac{1}{54}+...+\frac{1}{102}\)
ax + by = 4 (d)
(d) đi qua A(-1;3) <=> -a + 3b = 4 (1)
(d) đi qua B(3;-4) <=> 3a - 4b = 4 (2)
Từ (1) ; (2) suy ra \(\left\{{}\begin{matrix}-a+3b=4\\3a-4b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{28}{5}\\b=\dfrac{16}{5}\end{matrix}\right.\)
Vậy (d) : \(\dfrac{28}{5}x+\dfrac{16}{5}y=4\)
Hoành độ giao điểm tm pt
\(x^2-mx+3=0\)
\(\Delta=m^2-4.3=m^2-12\)
Để pt có 2 nghiệm pb khi m^2 - 12 > 0
Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=3\end{matrix}\right.\)
Ta có \(\left(x_1+x_2\right)^2-2x_1x_2-2\left|x_1x_2\right|=4\)
Thay vào ta được \(m^2-6-2.3=4\Leftrightarrow m^2-16=0\Leftrightarrow m=4;m=-4\)(tm)
Đổi: \(1h24'=1,4h\).
Gọi thời gian dự định là \(x\left(h\right);x>1,4\).
vận tốc dự định là \(y\left(km/h\right),y>5\).
Quãng đường AB là: \(xy\left(km\right)\).
Nếu vận tốc tăng \(10km/h\)thì vận tốc là \(y+10\left(km/h\right)\), thời gian đi hết quãng đường khi đó là \(x-1,4\left(h\right)\).
Nếu vận tốc giảm \(5km/h\)thì vận tốc là \(y-5\left(km/h\right)\), thời gian đi hết quãng đường khi đó là: \(x+1\left(h\right)\).
Ta có hệ phương trình:
\(\hept{\begin{cases}\left(x-1,4\right)\left(y+10\right)=xy\\\left(x+1\right)\left(y-5\right)=xy\end{cases}}\Leftrightarrow\hept{\begin{cases}10x-1,4y-14=0\\-5x+y-5=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}10x-1,4y=14\\-10x+2y=10\end{cases}}\Leftrightarrow\hept{\begin{cases}0,6y=24\\x=\frac{14+1,4y}{10}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=7\\y=40\end{cases}}\)(thỏa mãn)
Vậy vận tốc dự định là \(40km/h\), quãng đường AB là \(40.7=280km\).
Với mọi số thực \(a_i\) , ta có:
\(\left(a_1-a_2\right)^2+\left(a_2-a_3\right)^2+...+\left(a_n-a_1\right)^2\ge0\)
\(\Leftrightarrow2\left(a_1^2+a_2^2+a_3^2+...+a_n^2\right)\ge2\left(a_1a_2+a_2a_3+...+a_na_1\right)\)
\(\Leftrightarrow a_1^2+a_2^2+...+a_n^2\ge a_1a_2+a_2a_3+...+a_na_1\) (đpcm)
ừa ae
(a1 - a2)2 + (a2 - a3)2 + ...+(ar - a1) \(\ge\) 0
\( \Leftrightarrow \) 2 (a12 + a22 + ...+ an2 ) \(\ge\) 2 ( a1 a2 + a2 a3 +...+ an a1 )
\( \Leftrightarrow\) a12 + a22+...+ an2 \(\ge\) a1 a2 + a2 a3 +...+ an a1 (ĐPCM)
Công bố:
Giá của 30 viên kim cương 1 carat trên thị trường là \(30\times173.604.000=5.208.120.000\left(VND\right)\)
Nếu giao dịch theo cách của bạn A thì ngày đầu tiên, bạn A thu được \(2^0\)nghìn VND.
Ngày thứ hai, A thu được \(2^1\)nghìn VND.
Ngày thứ ba, A thu được \(2^2\)nghìn VND.
Ngày thứ tư, A thu được \(2^3\)nghìn VND.
...
Ngày thứ 30, A thu được \(2^{29}\)nghìn VND.
Vậy tổng số tiền bạn A thu được sẽ là \(1+2+2^2+2^3+...+2^{29}\)nghìn VND.
Đặt tạm \(S=1+2+2^2+2^3+...+2^{29}\)
\(\Rightarrow2S=2+2^2+2^3+2^4+...+2^{30}\)
\(\Rightarrow2S-S=\left(2+2^2+2^3+2^4+...+2^{30}\right)-\left(1+2+2^2+2^3+...+2^{29}\right)\)
\(\Rightarrow S=2^{30}-1\)
Vậy A thu được \(2^{30}-1\)nghìn đồng, và con số này chính là \(1.073.741.823.000\)VND
Không những A lời mà còn lời rất nhiều nữa:
\(1.073.741.823.000-5.208.120.000=1.068.533.703.000\)VND
Mình làm thế này có ổn ko?
Gọi tam giác ABC vuông tại A cạnh huyền BC là 10cm và đường cao AH (H thuộc BC) là 6cm
Vậy ta có: \(HB+HC=10\)
Dùng hệ thức lượng trong tam giác vuông ta có: \(HB.HC=AH^2=36\)
Vậy ta có: \(\hept{\begin{cases}HB+HC=10=S\\HB.HC=36=P\end{cases}}\)\
Vì \(S^2-4P=10^2-4.36\)\(=100-144=-44< 0\)
Vậy không có HB, HC nào thỏa mãn hpt trên (trái với hệ thức lượng trong tam giác vuông)
Vậy không có tam giác vuông có cạnh huyền là 10cm và đường cao tương ứng với cạnh huyền là 6cm
là S của hình đó ,dễ mà nhể