Một hôm bạn A thách đố bạn B chơi một trò chơi: "Giả sử tớ có 30 viên kim cương, mỗi viên 1 carat và tớ cần bán hết số kim cương đó cho cậu. Ngày đầu tiên, tớ sẽ bán 1 viên kim cương cho cậu với giá chỉ 1000 đồng. Ngày thứ hai, tớ sẽ bán 1 viên kim cương nữa với giá 2000 đồng. Ngày thứ ba, tớ sẽ viên kim cương tiếp theo với giá 4000 đồng. Cứ như vậy, mỗi ngày tớ sẽ bán 1 viên kim cương cho cậu với giá của viên kim cương ngày sau gấp đôi ngày trước cho đến khi tớ bán hết 30 viên kim cương. Cậu sẽ không được dừng việc giao dịch giữa chừng. Cậu có chấp nhận giao dịch không?" Bạn B nghe nói vậy thì ngay lập tức đồng ý "giao dịch". Hỏi trong "thương vụ" này, ai được lời và lời bao nhiêu? Biết rằng giá của 1 viên kim cương 1 carat trên thị trường là 173.604.000VND
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{1}{2}\\x_1x_2=-2\end{matrix}\right.\)
\(A=3-x_1^2-x_2^2\\ =3-\left(x_1^2+x_2^2\right)\\ =3-\left[\left(x_1+x_2\right)^2-2x_1x_2\right]\\ =3-\left[\left(-\dfrac{1}{2}\right)^2-2.\left(-2\right)\right]\\ =3-\left(\dfrac{1}{4}+4\right)\\ =3-\dfrac{17}{4}\\ =-\dfrac{5}{4}\)
\(B=\left(x_1-x_2\right)^2\\ =x_1^2+x_2^2-2x_1x_2\\ =\left(x_1+x_2\right)^2-4x_1x_2\\ =\left(\dfrac{1}{2}\right)^2-4.\left(-2\right)\\ =\dfrac{1}{4}+8\\ =\dfrac{33}{4}\)
\(D=\left(1+x_1\right)\left(2-x_1\right)+\left(1+x_2\right)\left(2-x_2\right)\\ =2+x_1-x_1^2+2+x_2-x_2^2\\ =4+\left(x_1+x_2\right)-\left(x_1^2+x_2^2\right)\\ =4+\dfrac{1}{2}-\left[\left(x_1+x_2\right)^2-2x_1x_2\right]\\ =\dfrac{9}{2}-\left[\left(\dfrac{1}{2}\right)^2-2.\left(-2\right)\right]\\ =\dfrac{9}{2}-\dfrac{17}{4}\\ =\dfrac{1}{4}\)
a, \(\Delta'=1-\left(2m-5\right)=6-2m\)
để pt có nghiệm kép \(6-2m=0\Leftrightarrow m=3\)
b, để pt có 2 nghiệm pb \(6-2m>0\Leftrightarrow m< 3\)
Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=2m-5\end{matrix}\right.\)
Ta có \(\left(x_1+x_2\right)^2-7x_1x_2=0\)
\(4-7\left(2m-5\right)=0\Leftrightarrow2m-5=\dfrac{4}{7}\Leftrightarrow m=\dfrac{39}{14}\)(tm)
a) Xét pt \(x^2-2x+2m-5=0\), có \(\Delta'=\left(-1\right)^2-\left(2m-5\right)=1-2m+5=6-2m\)
Để pt có nghiệm kép thì \(\Delta'=0\)hay \(6-2m=0\)\(\Leftrightarrow m=3\)
b) Để pt có 2 nghiệm phân biệt thì \(\Delta'>0\)hay \(6-2m>0\)\(\Leftrightarrow m< 3\)
Khi đó, ta có \(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=2m-5\end{cases}}\)(hệ thức Vi-ét)
Từ đó \(x_1^2+x_2^2=5x_1x_2\)\(\Leftrightarrow\left(x_1+x_2\right)^2=7x_1x_2\)\(\Leftrightarrow2^2=7\left(2m-5\right)\)\(\Leftrightarrow4=14m-35\)\(\Leftrightarrow14m=39\)\(\Leftrightarrow m=\frac{39}{14}\)(nhận)
Vậy để [...] thì \(m=\frac{39}{14}\)
Gọi bán kính hình tròn lớn r ; bán kính hình tròn nhỏ : r1
Diện tích vành khuyên : S = \(r^2.\pi-r_1^2.\pi=\pi\left(r^2-r_1^2\right)\)
Lại có diện tích hình tròn (A;AB) S1 = AB2.\(\pi\) = (BO2 - AO2).\(\pi=\left(r^2-r_1^2\right).\pi\)
=> S = S1 (đpcm)
Đường trỏn nhỏ bán kính OA, đường tròn lớn bán kính OB
Mặt khác do BC là tiếp tuyến đường tròn nhỏ
\(\Rightarrow OA\perp BC\)
\(\Rightarrow A\) là trung điểm BC
\(\Rightarrow AB^2=OB^2-OA^2\)
Diện tích hình vành khuyên:
\(S_1=S_{\left(O;OB\right)}-S_{\left(O;OA\right)}=\pi OB^2-\pi.OA^2=\pi\left(OB^2-OA^2\right)\)
\(S_{\left(A;AB\right)}=\pi.AB^2=\pi\left(OB^2-OA^2\right)\)
\(\Rightarrow S_1=S_{\left(A;AB\right)}\) (đpcm)
Do \(x^2+2mx+n=0\) có nghiệm \(\Rightarrow m^2-n\ge0\)
Xét pt: \(x^2+2\left(k+\dfrac{1}{k}\right)mx+n\left(k+\dfrac{1}{k}\right)^2=0\)
\(\Delta'=\left(k+\dfrac{1}{k}\right)^2m^2-n\left(k+\dfrac{1}{k}\right)^2=\left(k+\dfrac{1}{k}\right)^2\left(m^2-n\right)\ge0\) với mọi k
\(\Rightarrow\)Pt đã cho có nghiệm
xét m=0 thay vào ptr đã cho được x=-1 (loại)
xét m khác 0
ptr đã cho là ptr bậc 2 có 2 nghiệm phân biệt khi ∆ >0
<=> (m2+m+1)2-4m(m+1) >0
<=> (m2+m)2+2(m2+m) +1 -4(m2+m)>0
<=> (m2+m)2-2(m2+m)+1>0
<=> (m2+m-1)2>0
<=> m2+m-1 khác 0
<=> m khác \(\frac{-1\pm\sqrt{5}}{2}\)
Gọi x1, x2 là hai nghiệm phân biệt của ptr
=> \(\hept{\begin{cases}x1+x2=\frac{m^2+m+1}{m}\\x1.x2=\frac{m+1}{m}\end{cases}}\)(1)
Vì ptr đã cho có hai nghiệm khác -1 nên
{x1 # -1 và x2 #-1
=> (x1+1)(x2+1) # 0 và (x1+1) + (x2+1) # 0
=> x1.x2 +x1+x2+1 khác 0 và x1 +x2 +2 khác 0
thay (1) vào
Với \(m=0\) không thỏa mãn
Với \(m\ne0\) pt có 2 nghiệm pb khác -1 khi:
\(\left\{{}\begin{matrix}\Delta=\left(m^2+m+1\right)^2-4m\left(m+1\right)>0\\m+\left(m^2+m+1\right)+m+1\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2+m\right)^2-2\left(m^2+m\right)+1>0\\m^2+3m+2\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2+m-1\right)^2>0\\m^2+3m+2\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^2+m-1\ne0\\m^2+3m+2\ne0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m\ne\dfrac{-1\pm\sqrt{5}}{2}\\m\ne-2\\m\ne-1;m\ne0\end{matrix}\right.\)
????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????
Đặt x+y=a; x-y=b
Hệ \(\Leftrightarrow\left\{{}\begin{matrix}3a-2b=9\\2a+b=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3a-2b=9\\4a+2b=-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3a-2b=9\\7a=7\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3-2b=9\\a=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b=-3\\a=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-y=-3\\x+y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x=-2\\x+y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\-1+y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=2\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x+5y=9\\3x+y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+5y=9\\15x+5y=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}14x=-14\\y=\dfrac{9-x}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=2\end{matrix}\right.\)
ko hiu dc vì số tiền quá lớn
Công bố:
Giá của 30 viên kim cương 1 carat trên thị trường là \(30\times173.604.000=5.208.120.000\left(VND\right)\)
Nếu giao dịch theo cách của bạn A thì ngày đầu tiên, bạn A thu được \(2^0\)nghìn VND.
Ngày thứ hai, A thu được \(2^1\)nghìn VND.
Ngày thứ ba, A thu được \(2^2\)nghìn VND.
Ngày thứ tư, A thu được \(2^3\)nghìn VND.
...
Ngày thứ 30, A thu được \(2^{29}\)nghìn VND.
Vậy tổng số tiền bạn A thu được sẽ là \(1+2+2^2+2^3+...+2^{29}\)nghìn VND.
Đặt tạm \(S=1+2+2^2+2^3+...+2^{29}\)
\(\Rightarrow2S=2+2^2+2^3+2^4+...+2^{30}\)
\(\Rightarrow2S-S=\left(2+2^2+2^3+2^4+...+2^{30}\right)-\left(1+2+2^2+2^3+...+2^{29}\right)\)
\(\Rightarrow S=2^{30}-1\)
Vậy A thu được \(2^{30}-1\)nghìn đồng, và con số này chính là \(1.073.741.823.000\)VND
Không những A lời mà còn lời rất nhiều nữa:
\(1.073.741.823.000-5.208.120.000=1.068.533.703.000\)VND