K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 2 2023

loading...  

20 tháng 2 2023

Nếu n là số lẻ n có dạng : 2k + 1 ( k\(\in\) N)

A = 2018 + ( 2k+ 1+ 1)2 

A = 2018 + (2k+2)2

A = 2018 + 4.( k+1)2 ⇒ A  ⋮ 2 Nếu A là số chính phương 

⇒ A ⋮ 4 ( tính chất 1 số chính phương ) 

⇒ 2018 ⋮ 4 ( vô lý)

Nếu n là số chẵn  n =2k ( k \(\in\) N)

A = 2018 + ( 2k + 1)2

2k + 1 không chia hết cho 4 ⇒ ( 2k+1)2 : 4 dư 1 ( tc của 1 số chính phương)

A = 2018 + ( 2k + 1)2 : 4 dư 3 ⇒ A không phải là số chính phương vì một số chính phương chia 4 chỉ có thể dư 0 hoặc 1.

Vậy không thể tồn tại n để 2018 + ( n +1)2 là số chính phương 

 

Gỉa sử 2018 + \(n^2\) là số chính phương => 2018 + \(n^2\) = \(a^2\) ( a là số tự nhiên )
=> 2018 = \(a^2\)- \(n^2\) = (a - n)(a + n)
Ta có: (a + n) - (a - n) =  a + n - a +n = 2n ( chia hết cho 2 )

\(\Rightarrow\) 2 số m - n và m + n phải có cùng tính chẵn lẻ
Mà 2018 = 1.2018 = 2.1009 với các cặp số (1;2018) và (2;1009) đều không cùng tính chẵn lẻ 
Vậy ta kết luận:  2018 + n^2 không là số chính phương

20 tháng 2 2023

       A =  7 + 72 + 73 + .........+ 7n-1 + 7n

     7A =        72  + 73 +..........+ 7n-1 + 7n + 7n-1

7A - A =       7n+1 - 7 

      6A =     ( 7n+1 - 7) 

        A =      (7n+1 - 7) : 6

 

20 tháng 2 2023

\(\dfrac{2^{12}.3^{5}-4^{6}.9^{2}}{(2^{2}.3)^{6}}\)

\(=\dfrac{2^{12}.3^{5}-2^{12}.3^{4}}{2^{12}.3^{6}}\)

\(=\dfrac{2^{12}.3^{4}(3-1)}{2^{12}.3^{4}.3^{2}}\)

\(=\dfrac{2}{9}\)

20 tháng 2 2023
  • ngocduong516
  • 06/12/2021

ta có : 803 là số lẻ 

        => ( 50a + 7b + 3 )( 50^a + 50a + b ) là số lẻ 

        => 50a + 7b + 3 và 50^a + 50a + b là số lẻ 

TH1 : nếu a khác 0 

=> 50^a + 50a là là số chẵn 

mà 50^a + 50a + b là số lẻ ( theo trên )

=> b lẻ

=> 50b + 3 chẵn

=> 50a + 7b + 3 chẵn ( loại )

TH2 : a = 0

=> (7b+3)(b+1) = 803 = 1. 803 = 11.73

vì b thuộc N

=> 7b + 3 > b+1

do đó

7b + 3 = 803 và b +1 = 1 => loại

hoặc 7b+3 = 73 và b +1 = 11 => b = 50 

vậy a = 0 và b = 100