Chỉ ra 1 biện pháp nghệ thuật trong khổ thơ đầu của bài thơ "Viếng lăng Bác" và phân tích tác dụng về mặt kiến thức, nội dung, tình cảm.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\frac{a\left(b+c\right)}{b^2+bc+c^2}=\frac{a\left(b+c\right)\left(ab+bc+ca\right)}{\left(b^2+bc+c^2\right)\left(ab+bc+ca\right)}\)
\(\ge\frac{4a\left(b+c\right)\left(ab+bc+ca\right)}{\left(b^2+bc+c^2+ab+bc+ca\right)^2}=\frac{4a\left(ab+bc+ca\right)}{\left(b+c\right)\left(a+b+c\right)^2}\)
Tương tự ta được:
\(\frac{a\left(b+c\right)}{b^2+bc+c^2}+\frac{b\left(c+a\right)}{c^2+ca+a^2}+\frac{c\left(a+b\right)}{a^2+ab+b^2}\)
\(\ge\frac{4a\left(ab+bc+ca\right)}{\left(b+c\right)\left(a+b+c\right)^2}+\frac{4b\left(ab+bc+ca\right)}{\left(c+a\right)\left(a+b+c\right)^2}+\frac{4c\left(ab+bc+ca\right)}{\left(a+b\right)\left(a+b+c\right)^2}\)
Vậy ta cần chứng minh:
\(\frac{4a\left(ab+bc+ca\right)}{\left(b+c\right)\left(a+b+c\right)^2}+\frac{4b\left(ab+bc+ca\right)}{\left(c+a\right)\left(a+b+c\right)^2}+\frac{4c\left(ab+bc+ca\right)}{\left(a+b\right)\left(a+b+c\right)^2}\ge2\)
Ta viết lại bất đẳng thức trên thành:
\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\)
Đánh giá trên đúng theo bất đẳng thức Bunhiacopxki dạng phân thức. Vậy bất đẳng thức đã được chứng minh.
\(y+3=0\)
\(y=-3\)
Để PT vô nghiệm \(\left(m-1\right)x+2=-3\)
\(\left(m-1\right)x=-5\)
Để PT vô nghiệm thì : \(m-1=0\)
\(\Rightarrow m=1\)
ĐKXĐ : x \(\ge0;x\ne1\)
Khi đó B = \(\frac{2\left(\sqrt{x}-1\right)}{x-1}+\frac{4\left(\sqrt{x}+1\right)}{x-1}-\frac{7\sqrt{x}}{x-1}=\frac{2-\sqrt{x}}{x-1}\)
Khi đó \(M=A.B=\left(x-3\sqrt{x}+2\right).\frac{2-\sqrt{x}}{x-1}=\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right).\frac{2-\sqrt{x}}{x-1}\)
\(=\frac{-\left(\sqrt{x}-2\right)^2}{\sqrt{x}+1}\)
Để \(M\ge0\Leftrightarrow\frac{-\left(\sqrt{x}-2\right)^2}{\sqrt{x}+1}\ge0\Leftrightarrow-\left(\sqrt{x}-2\right)^2\ge0\)(Vì \(\sqrt{x}+1\ge1>0\))
\(\Leftrightarrow\sqrt{x}-2=0\Leftrightarrow x=4\)
Flo đc tăng sức mạnh còn bạn thì tăng vé Báo Cáo VIP nha!
@congtybaocao
\(\Delta'=\left(m+1\right)^2-\left(-2m-3\right)=m^2+2m+1+2m+3\)
\(=m^2+4m+4=\left(m+2\right)^2\ge0\)
Vậy pt luôn có 2 nghiệm x1;x2