Cho hình thang ABCD, đáy CD>AB. Gọi M,N lần lượt là trung điểm của AB và CD. Gọi P là giao điểm của AD và BC. Chứng Minh rằng M,N,P thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để A ⋮ B thì:
3n ≤ 9 và 2n ≥ 4
n ≤ 3 và n ≥ 2
n = 2 hoặc n = 3
3\(x\)(- \(\dfrac{4}{3}\)\(x\) + 1) - 4\(x\).(\(x\) - 2) = 10
-4\(x^2\) + 3\(x\) - 4\(x^2\) + 3\(x\) + 8\(x\) = 10
-8\(x^2\) + 14\(x\) - 10 = 0
4\(x^2\) + 7\(x\) - 5 = 0
4.(\(x^2\) + 2.\(\dfrac{7}{8}\) + \(\dfrac{49}{64}\)) - \(\dfrac{129}{16}\) = 0
4.(\(x\) + \(\dfrac{7}{8}\))2 = \(\dfrac{129}{16}\)
(\(x\) + \(\dfrac{7}{8}\))2 = \(\dfrac{129}{16}\)
\(x\) = \(\dfrac{\pm\sqrt{129}-7}{8}\)
36\(x^3\).y4.z2 : 6\(x^2\).y4.z
= (36 : 6).(\(x^3\).\(x^2\)).(y4.y4).z
= 6.\(x^5\).y8.z
a) Do MN ⊥ AH (gt)
BC ⊥ AH (AH là đường cao)
⇒ MN // BC
Tứ giác BCMN có:
MN // BC (cmt)
⇒ BCMN là hình thang
b) Do MN // BC (cmt)
⇒ ∠MBC = ∠BMN (so le trong) (1)
Lại có:
BM là tia phân giác của ∠ABC (gt)
⇒ ∠MBC = ∠MBN (2)
Từ (1) và (2) ⇒ ∠MBN = ∠BMN
∆BMN có:
∠MBN = ∠BMN (cmt)
⇒ ∆BMN cân tại N
⇒ BM = MN
a) (1/3 x²y)(2xy³)
= (1/3 . 2).(x².x).(y.y³)
= 2/3 x³y⁴
Hệ số: 2/3
Phần biến: x³y⁴
Bậc: 7
b) 1/4 x³y .(-2x³y⁴)
= [1/4 . (-2)].(x³.x³).(y.y⁴)
= -1/2 x⁶y⁵
Hệ số: -1/2
Phần biến: x⁶y⁵
Bậc: 11
c) -xy.(2x³y⁴).(-5/4x²y³)
= [-2.(-5/4)].(x.x³.x²).(y.y⁴.y³)
= 5/2 x⁶y⁸
Hệ số: 5/2
Phần biến: x⁶y⁸
Bậc: 14