(1 điểm) Nêu các dụng cụ thí nghiệm trong hình dưới và các bước tiến hành thí nghiệm đo gia tốc rơi tự do.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(S_1=d_1=50\left(m\right),t_1=40\left(s\right)\)
\(=>v_{tb\left(1\right)}=v_1=\dfrac{S_1}{t_1}=\dfrac{50}{40}=1,25\left(m/s\right)\)
b) \(S_2=d_2=50\left(m\right),t_2=42\left(s\right)\)
\(=>v_{tb\left(2\right)}=v_2=\dfrac{S_2}{t_2}=\dfrac{50}{42}=\dfrac{25}{21}\left(m/s\right)\)
c) \(S_3=S_1+S_2=50+50=100\left(m\right),d_3=0\left(m\right)\\ t_3=t_1+t_2=40+42=82\left(s\right)\)
\(=>v_{tb\left(3\right)}=\dfrac{S_3}{t_3}=\dfrac{100}{82}=\dfrac{50}{41}\left(m/s\right)\)
\(v_3=\dfrac{d_3}{t_3}=\dfrac{0}{82}=0\left(m/s\right)\)
Tốc độ trung bình tính theo công thức:
Lần đi: v1 = 50/40 = 1,25 (m/s)
Lần về: v2 = 50/42 = 1,19 (m/s)
Cả đi và về:
Trong đề bài chưa có hình vẽ đâu nhé. Bạn bổ sung thêm hình vẽ vào.
Bạn ơi cho mình hỏi là viết số 2 mũ 20 dưới dạng lũy thừa có số mũ 5
\(x^2\) - 6\(x\) + 3 = 4y2; \(x\); y \(\in\) Z ⇒ \(x^2\) - 6\(x\) + 3 ⋮ 4
Nếu \(x\) = 2k ⇒ (2k)2 - 6.2k + 3 ⋮ 4 ⇒ 4k2 - 12k + 3 ⋮ 4 ⇒ 3 ⋮ 4(loại)(*)
Nếu \(x\) = 2k + 1 ⇒ (2k + 1)2 - 6(2k + 1) + 3 ⋮ 4
⇒ 4k2+ 4k +1 - 12k - 6 + 3 ⋮ 4 ⇒ 4k2 - 8k - 2 ⋮ 4 ⇒ 2 ⋮ 4(loại)(**)
Từ (*);(**) ta có không tồn tại \(x;y\) thỏa mãn đề bài.