So sánh \(2-\sqrt{3}\) và \(3-2\sqrt{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn tự vẽ đths nhé
Do đths trên đi qua (-1;3) <=> -a + 5 = 3 <+> a = 2
a, tự vẽ
b, Hoành độ giao điểm thỏa mãn phương trình
\(\frac{3}{2}x-2=-\frac{1}{2}x+2\Leftrightarrow2x-4=0\Leftrightarrow x=2\)
Thay x = 2 vào pt d2 ta được : \(y=-\frac{1}{2}.2+2=1\)
Vậy A(2;1)
Ta có : \(\frac{AB}{AC}=\frac{1}{3}\Rightarrow AB=\frac{AC}{3}\)
Xét tam giác ABC vuông tại A, đường cao AH
\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\Rightarrow\frac{1}{36}=\frac{1}{\left(\frac{AC}{3}\right)^2}+\frac{1}{AC^2}\Rightarrow AC=6\sqrt{10}\)
=> \(AB=\frac{6\sqrt{10}}{3}=2\sqrt{10}\)
* Áp dụng hệ thức : \(AH.BC=AB.AC\Rightarrow BC=\frac{AB.AC}{AH}=\frac{120}{6}=20\)
* Áp dụng hệ thức : \(AB^2=BH.BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{40}{20}=2\)
=> CH = BC - BH = 20 - 2 = 18
Ta có \(a+b+c\ge3\sqrt[3]{abc}=3\)
Áp dụng bđt cosi ta có:
\(\frac{a^3}{\left(b+1\right)\left(c+2\right)}+\frac{b+1}{12}+\frac{c+2}{18}\ge3\sqrt[3]{\frac{a^3}{12.18}}=\frac{a}{2}\)
Làm tương tự
=>\(VT+\left(\frac{a+1}{12}+\frac{a+2}{18}\right)+\left(\frac{b+1}{12}+\frac{b+2}{18}\right)+\left(\frac{c+1}{12}+\frac{c+2}{18}\right)\ge\frac{a+b+c}{2}\)
=> \(VT\ge\frac{13}{36}.\left(a+b+c\right)-\frac{7}{12}\ge\frac{13}{36}.3-\frac{7}{12}=\frac{1}{2}\)(ĐPCM)