mng giúp em câu b và c nhé cmon ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do \(a\ge2\Rightarrow\sqrt{a-2}\ge0\)
\(b\ge3\Rightarrow\sqrt{b-3}\ge0\)
\(\Rightarrow\sqrt{a-2}+\sqrt{b-3}\ge0\)
Dấu ''='' xảy ra \(\Leftrightarrow\hept{\begin{cases}a=2\\b=3\end{cases}}\)
Vậy GTNN \(A=0\Leftrightarrow\hept{\begin{cases}a=2\\b=3\end{cases}}\)
Tham khảo ạ!
O là trung điểm của CD
AB đi qua trung điểm của CD nhưng AB không vuông góc với CD
\(=\sqrt{\left(2\sqrt{6}-3\right)^2}=\left|2\sqrt{6}-3\right|=2\sqrt{6}-3\)
\(\sqrt{33-12\sqrt{6}=\sqrt{3^2-2.3.2\sqrt{6}+\left(2\sqrt{6}\right)^2}}=\sqrt{\left(3-2\sqrt{6}\right)^2}=\left|3-2\sqrt{6}\right|=2\sqrt{6}-3\)
\(A=\sqrt{\left(2020-2x\right)^2}+\sqrt{\left(2019-2x\right)^2}-2\)
\(=\left|2020-2x\right|+\left|2019-2x\right|-2\)
\(=\left|2020-2x\right|+\left|2x-2019\right|-2\)
\(\ge\left|2020-2x+2x-2019\right|-2=\left|1\right|-2=-1\)
Dấu "=" xảy ra <=> ( 2020 - 2x )( 2x - 2019 ) ≥ 0 <=> 2019/2 ≤ x ≤ 1010
Vậy MinA = -1
\(C=\left(\frac{1}{\sqrt{x}-1}-\frac{1}{\sqrt{x}}\right):\left(\frac{\sqrt{x}+1}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}-2}\right)\)ĐK : \(x>0;x\ne1;4\)
\(=\left(\frac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\frac{x-\sqrt{x}-2-x+4}{x-4}\right)\)
\(=\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\frac{\sqrt{x}+2}{x-4}=\frac{\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(B=\left(\frac{1}{\sqrt{x}}-\frac{1}{1-\sqrt{x}}\right)\left(1-\frac{1}{1+\sqrt{x}}\right)\)ĐK : \(x>0;x\ne1\)
\(=\left(\frac{1-\sqrt{x}-\sqrt{x}}{\sqrt{x}\left(1-\sqrt{x}\right)}\right)\left(\frac{1+\sqrt{x}-1}{1+\sqrt{x}}\right)=\frac{1-2\sqrt{x}}{\sqrt{x}\left(1-\sqrt{x}\right)}.\frac{\sqrt{x}}{1+\sqrt{x}}=\frac{1-2\sqrt{x}}{1-x}\)
\(\sqrt{x-1-2\sqrt{x-2}}=3\)
\(\Leftrightarrow\sqrt{x-2-2\sqrt{x-2}+1}=3\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-2}-1\right)^2}=3\)
\(\Leftrightarrow\sqrt{x-2}-1=3\)
\(\Leftrightarrow\sqrt{x-2}=4\)
\(\Leftrightarrow x-2=16\)
\(\Leftrightarrow x=18\)
Vậy .....
\(\sqrt{x-1-2\sqrt{x-2}}=3\)
\(\Leftrightarrow\sqrt{x-2-2\sqrt{x-2}+1}=3\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-2}-1\right)^2}=3\)
\(\Leftrightarrow\sqrt{x-2}-1=3\)
\(\Leftrightarrow\sqrt{x-2}=4\)
\(\Leftrightarrow x-2=16\)
\(\Leftrightarrow x=18\)