Cho hai so a,b không đồng thời bằng 0.Tìm GTLN,GTNN Của biểu thức :
Q=a*a-ab+b*b\a*a+ab+b*b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x+5\right)\left(x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+5=0\\x+4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-5\\x=-4\end{cases}}}\)
vậy x=-5 và x=-4
b) dễ tự làm
c)\(|x+9|-3=5\)
\(|x+9|=2\)
\(\Leftrightarrow\orbr{\begin{cases}x+9=2\\x+9=-2\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-7\\x=7\end{cases}}}\)
vậy x=-7 hoặc x=7
1/3 công 2/5= 5/15 cộng với 6/15=11/15
NẾU ĐÚNG CHO MÌNH ĐÚNG NHÉ.
NẾU SAI CHO MÌNH SAI. CẢM ƠN CÁC BẠN. THANK
bn j ơi câu này mi bt nhưng ko bt viết dấu mũ hay mấy cái mk cần nên mk xl
Để A là phân số khi n - 3 khác 0 (n nguyên)
Vậy n khác 3(n nguyên) thì A là phân số
* Với n=0 thì A=-1/3
:33 Phương pháp SOS e chưa học và đọc :)) E làm các pp khác nhá anh :33
Cách 1 :Đặt : \(A=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)
\(\frac{a^2}{ab+ac}+\frac{b^2}{ab+bc}+\frac{c^2}{ac+bc}\)
\(\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\ge\frac{3\left(ab+bc+ca\right)}{2\left(ab+bc+ca\right)}=\frac{3}{2}\)
Cách 2 : ( Kĩ thuật điểm rơi ) : Cộng 3 vào hai vế của BĐT rồi sử dụng AM - GM
Cách 3 : Nhân cả hai vế của BĐT với a+b+c
Cách 4 : Kĩ thuật đặt ẩn phụ ( Đặt a+b=x, b+c=y,c+a=z )
đáp số là : 10206,54152
CHÚC BẠN HỌC GIỎI ! Nhớ k cho mình nha
Vì 1 cái chảo có thể chứa 2 cái bánh nên cho 2 cái bánh vào chảo cùng mội lúc là được. Mỗi mặt 1 phút nếu cho cùng 1 lần thì cuxg chỉ mất 2 phút hoy:))) Cứ như thế mà lảm
Bổ đề \(xy\le\frac{\left(x+y\right)^2}{4}\left(\forall x,y\inℝ\right)\)
Ta có \(Q=1-\frac{2ab}{a^2+ab+b^2}\)
do \(a^2+ab+b^2=\left(a+b\right)^2-ab\ge\frac{3}{4}\left(a+b\right)^2\)
Nên \(\frac{2ab}{a^2+ab+b^2}\le\frac{2ab}{\frac{3}{4}\left(a+b\right)^2}\le\frac{\frac{\left(a+b\right)^2}{2}}{\frac{3}{4}\left(a+b\right)^2}=\frac{2}{3}\)
=> \(Q\ge\frac{1}{3}\)
dấu "=" xảy ra khi zà chỉ khi a=b