Cho tam giác ABC vuông tại A có AB = 8cm,AC = 15cm.Vẽ đường cao AH.Gọi D là điểm đối xứng của B qua H.Vẽ đường tròn đường kính CD cắt AC ở E.
a. Chứng minh HE là tiếp tuyến của đường tròn
b. Tính HE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(A=x-3\sqrt{x}-5=x-2.\frac{3}{2}\sqrt{x}+\frac{9}{4}-\frac{9}{4}-5\)
\(=\left(\sqrt{x}-\frac{3}{2}\right)^2-\frac{29}{4}\ge-\frac{29}{4}\)
Dấu ''='' xảy ra khi x = 9/4
b, \(B=3+3\sqrt{x}-5=3\sqrt{x}-2\ge-2\)
Dấu ''='' xảy ra khi x = 0
a, Gọi O là trung điểm CD
Từ giả thiết suy ra tam giác ABD và tam giác ODE đều
=> DE = DH = DO = 1 4 BC
=> H E O ^ = 90 0
=> HE là tiếp tuyến của đường tròn đường kính CD
b, HE = 4 3
a, Gọi O là trung điểm CD
Từ giả thiết suy ra tam giác ABD và tam giác ODE đều
=> DE = DH = DO = 1 4 BC
=> H E O ^ = 90 0
=> HE là tiếp tuyến của đường tròn đường kính CD