K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2023

Gọi chiều chiều rộng là x ( x > 0)

Chiều dài là: 3( x - 2) - 3 = 3x - 9

Diện tích hình chữ nhật lúc đầu là: x(3x-9) = 3x2 - 9x

Diện tích hình chữ nhật sau khi tăng mỗi cạnh thêm 3cm là:

(x+3)(3x-9+3) =  (x+3)(3x -6) = 3x2 + 9x - 6x - 18 = 3x2 + 3x - 18

Theo bài ra ta có: 3x2 + 3x - 18 - (3x2 -9x) = 66

                                      12x - 18 = 66

                                       12x = 66 + 18

                                        12x = 84

                                             x = 7 

                                   Chiều rộng là 7

                                      chiều dài là:   7 x 3 - 9 = 12

Chu vi ( 12 + 7) x 2 =  38 (cm)

Kết luận : Chu vi hình chữ nhật 38 cm

                                      

6 tháng 2 2023

loading...

Diên tích DIGH là :

3.3 = 9 (cm²)

Tổng diện tích CDHE và FBDI là :

3.(BD+CD)=66-9=57 cm²

BD+CD = 57:3 = 19 cm

Vậy chu vi hình chữ nhật là 

19.2 = 38 cm

#Toán lớp 9

 

AH
Akai Haruma
Giáo viên
29 tháng 1 2023

Lời giải:

$2x+|2y-5|=3$

$x-3|2y-5|=-2$

$\Rightarrow 3(2x+|2y-5|)+(x-3|2y-5|)=3.3+(-2)$

$\Leftrightarrow 7x=7$

$\Leftrightarrow x=1$

$|2y-5|=3-2x=3-2.1=1$

$\Rightarrow 2y-5=\pm 1$

$\Rightarrow y=3$ hoặc $y=2$

Vậy $(x,y)=(1,3); (1,2)$

30 tháng 12 2022

Đặt \(x^{1003}=a;y^{1003}=b;1003=c\). Khi đó điều kiện đã cho 

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=c\\a^2+b^2=2c\end{matrix}\right.\)

Ta có \(a^2+b^2=2c\Leftrightarrow\left(a+b\right)^2=2c+2ab\) \(\Leftrightarrow c^2-2c=2ab\) \(\Leftrightarrow ab=\dfrac{c^2-2c}{2}\)

Từ đó \(x^{3009}+y^{3009}=a^3+b^3=\left(a+b\right)\left(a^2+b^2-ab\right)\) \(=c\left(2c-\dfrac{c^2-2c}{2}\right)\) \(=\dfrac{6c^2-c^3}{2}\) \(=\dfrac{6.1003^2-1003^3}{2}=-501495486,5\)

(mình tính đúng luôn nhé)

 

31 tháng 12 2022

e cảm ơn

25 tháng 12 2022

Điều kiện đã cho

\(\Leftrightarrow\dfrac{1}{1+a}=\left(1-\dfrac{1}{1+b}\right)+\left(1-\dfrac{1}{1+c}\right)\)

\(\Leftrightarrow\dfrac{1}{1+a}=\dfrac{b}{1+b}+\dfrac{c}{1+c}\)

\(\Leftrightarrow\dfrac{1}{1+a}=\dfrac{b+c+2bc}{bc+b+c+1}\)

\(\Leftrightarrow bc+b+c+1=b+c+2bc+ab+ac+2abc\)

\(\Leftrightarrow2abc+ab+bc+ca=1\)

Mà \(ab+bc+ca\ge3\left(\sqrt[3]{abc}\right)^2\)

\(\Rightarrow2abc+3\left(\sqrt[3]{abc}\right)^2\le1\)

Đặt \(\sqrt[3]{abc}=t\left(t\ge0\right)\), khi đó \(2t^3+3t^2\le1\) 

\(\Leftrightarrow\left(t+1\right)^2\left(2t-1\right)\le0\)

Do \(\left(t+1\right)^2\ge0\) nên \(2t-1\le0\) \(\Leftrightarrow t\le\dfrac{1}{2}\) \(\Leftrightarrow abc\le\dfrac{1}{8}\)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{2}\)

17 tháng 12 2022

CẢNH BÁO! Tiếp tục đọc, hoặc linh hồn của bạn sẽ được thực hiện, ngay cả khi bạn đọc từ "cảnh báo"! Có một lần là một người tên là Duke Hunapon. Anh ta lười biếng, và rất bảnh bao. Anh ấy luôn mặc một chiếc áo khoác, không có vấn đề gì ở bên ngoài. Anh ta có một người anh trai tên là Michael, người luôn làm anh ta vây quanh. Một ngày nọ, Michael bị giết, và nó ảnh hưởng rất nhiều đến Duke. Anh ta phát điên và bắt đầu giết người. Chẳng mấy chốc, anh ta đã chiến đấu với ai đó và bị giết. Bây giờ, anh ta đi lang thang xung quanh như một bộ xương cao với một chiếc áo sơ mi màu đỏ, và cùng một chiếc áo hoodie mà Duke đã mặc. Bộ xương này được gọi là "Swapfell Papyrus", và anh ta sẽ giết bạn nếu bạn không đăng bài này trên 15 phần bình luận của bất kỳ trang web nào trước khi đi ngủ. Nếu bạn thất bại, và bạn thức dậy khi anh ta ở trong phòng của bạn, cái chết của bạn sẽ chậm và rất đau đớn. Một cô gái tên Lily Lilupanin đọc điều này, và không nghe. Cô bị hãm hiếp và bị giết trong giấc ngủ. Nếu bạn sao chép và dán vào 15 phần bình luận của bất kỳ trang web nào trước khi đi ngủ, Swapfell Papyrus sẽ đảm bảo bạn cảm thấy an toàn

11 tháng 4 2022

Ta có : Hệ \(\hept{\begin{cases}x^3+xy^2-10y=0\\x^2+6y^2=10\end{cases}}\Leftrightarrow\hept{\begin{cases}x\left(x^2+y^2\right)-10y=0\\x^2+6y^2=10\end{cases}}\) 

\(\Leftrightarrow\)\(\hept{\begin{cases}x\left(10-6y^2+y^2\right)-10y=0\\x^2=10-6y^2\end{cases}\Leftrightarrow\hept{\begin{cases}2x-xy^2-2y=0\\x^2=10-6y^2\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{2y}{2-y^2}\\x^2=10-6y^2\end{cases}}\)(1) 

Với y = \(\pm\sqrt{2}\)=> \(∄\)x thỏa mãn hệ 

=> y \(\ne\pm\sqrt{2}\)

Khi đó hệ (1) <=> \(\hept{\begin{cases}\left(\frac{2y}{2-y^2}\right)^2=10-6y^2\\x^2=10-6y^2\end{cases}}\Leftrightarrow\hept{\begin{cases}6y^6-34y^4+68y^2-40=0\left(2\right)\\x^2=10-6y^2\left(^∗\right)\end{cases}}\)

Đặt t = y2 \(\ge0\)

Khi đó (2) <=> 6t3 - 34t2 + 68t - 40 = 0

<=> 3t3 - 17t2 + 34t - 20 = 0

<=> (3t3 - 3) - 17(t2 - 2t + 1) = 0

<=> 3(t - 1)(t2 + t + 1) - 17(t - 1)2 = 0

<=> (t - 1)(3t2 - 14t + 20) = 0

<=> t - 1 = 0 (Vì 3t2 - 14t + 20 > 0 \(\forall t\)

<=> t = 1

Khi đó y2 = 1 <=> y = \(\pm1\)

Thay y = \(\pm1\)vào (*) 

=> x2 = 10 - 6y2 = 10 - 6 = 4 <=> x = \(\pm2\)
Vậy hệ có 4 nghiệm (2 ; 1) ; (2 ; - 1) ; (-2 ; - 1) ; (-2 ; 1) 

NV
11 tháng 4 2022

\(\Rightarrow x^3+xy^2-\left(x^2+6y^2\right)y=0\)

\(\Leftrightarrow x^3-x^2y+xy^2-6y^3=0\)

\(\Leftrightarrow\left(x-2y\right)\left(x^2+xy+3y^2\right)=0\)

\(\Rightarrow x=2y\)

Thế vào \(x^2+6y^2=10\)

\(\Rightarrow10y^2=10\Rightarrow\left[{}\begin{matrix}y=1\Rightarrow x=2\\y=-1\Rightarrow x=-2\end{matrix}\right.\)

NV
10 tháng 4 2022

Cách 1:

Do vai trò của a;b;c là như nhau, không mất tính tổng quát, giả sử \(a\ge b\ge c\)

\(\Rightarrow3=ab+bc+ca\le3ab\Rightarrow ab\ge1\)

Ta có:

\(\dfrac{1}{1+a^2}+\dfrac{1}{1+b^2}=\dfrac{a^2+b^2+2}{a^2b^2+a^2+b^2+1}=1-\dfrac{a^2b^2-1}{a^2b^2+a^2+b^2+1}\)

\(\ge1-\dfrac{a^2b^2-1}{a^2b^2+2ab+1}=1-\dfrac{ab-1}{ab+1}=\dfrac{2}{1+ab}\)

\(\Rightarrow VT\ge\dfrac{2}{1+ab}+\dfrac{1}{1+c^2}\)

Nên ta chỉ cần chứng minh:

\(\dfrac{2}{1+ab}+\dfrac{1}{1+c^2}\ge\dfrac{3}{2}\Leftrightarrow c^2+3-ab\ge3abc^2\)

\(\Leftrightarrow c^2+ac+bc\ge3abc^2\Leftrightarrow a+b+c\ge3abc\)

\(\Leftrightarrow\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\ge3\)

Đúng do \(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\ge\dfrac{9}{ab+bc+ca}=3\)

Dấu "=" xảy ra khi \(a=b=c=1\)

NV
10 tháng 4 2022

Cách 2:

\(\Leftrightarrow1-\dfrac{a^2}{a^2+1}+1-\dfrac{b^2}{b^2+1}+1-\dfrac{c^2}{c^2+1}\ge\dfrac{3}{2}\)

\(\Leftrightarrow\dfrac{3a^2}{3a^2+3}+\dfrac{3b^2}{3b^2+3}+\dfrac{3c^2}{3c^2+3}\le\dfrac{3}{2}\)

\(\Leftrightarrow\dfrac{3a^2}{2a^2+a^2+ab+bc+ca}+\dfrac{3b^2}{2b^2+b^2+ab+bc+ca}+\dfrac{3c^2}{2c^2+c^2+ab+bc+ca}\le\dfrac{3}{2}\)

\(\Leftrightarrow\dfrac{a^2}{a\left(a+b+c\right)+2a^2+bc}+\dfrac{b^2}{b\left(a+b+c\right)+2b^2+ac}+\dfrac{c^2}{c\left(a+b+c\right)+2c^2+ab}\le\dfrac{1}{2}\)

Ta có:

\(\dfrac{a^2}{a\left(a+b+c\right)+2a^2+bc}\le\dfrac{1}{4}\left(\dfrac{a^2}{a\left(a+b+c\right)}+\dfrac{a^2}{2a^2+bc}\right)=\dfrac{1}{4}\left(\dfrac{a}{a+b+c}+\dfrac{a^2}{2a^2+bc}\right)\)

Tương tự và cộng lại:

\(VT\le\dfrac{1}{4}\left(1+\dfrac{a^2}{2a^2+bc}+\dfrac{b^2}{2b^2+ac}+\dfrac{c^2}{2c^2+ab}\right)\)

Nên ta chỉ cần chứng minh:

\(\dfrac{a^2}{2a^2+bc}+\dfrac{b^2}{2b^2+ac}+\dfrac{c^2}{2c^2+ab}\le1\)

\(\Leftrightarrow\dfrac{bc}{2a^2+bc}+\dfrac{ac}{2b^2+ac}+\dfrac{ab}{2c^2+ab}\ge1\)

\(\Leftrightarrow\dfrac{\left(bc\right)^2}{2a^2bc+\left(bc\right)^2}+\dfrac{\left(ca\right)^2}{2ab^2c+\left(ac\right)^2}+\dfrac{\left(ab\right)^2}{2abc^2+\left(ab\right)^2}\ge1\)

Đúng do:

\(VT\ge\dfrac{\left(ab+bc+ca\right)^2}{\left(ab+bc+ca\right)^2}=1\)