một khu đất hình chữ nhật có chu vi 224m, chiều rộng 32m. Xung quanh khu đất người ta trồng nhãn và xà cừ, cứ cách 2m trồng một cây, bốn góc đều có cây. Tính số cây nhãn trồng được, biết rằng 4 góc là xà cừ còn lại tất cả là cây nhãn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC=\sqrt{5^2+12^2}=13\left(cm\right)\)
Xét ΔABC có AD là phân giác
nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)
=>\(\dfrac{BD}{5}=\dfrac{CD}{12}\)
mà BD+CD=BC=13cm
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{5}=\dfrac{CD}{12}=\dfrac{BD+CD}{5+12}=\dfrac{13}{17}\)
=>\(BD=\dfrac{13}{17}\cdot5=\dfrac{65}{17}\left(cm\right);CD=\dfrac{13}{17}\cdot12=\dfrac{156}{17}\left(cm\right)\)
b: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có
\(\widehat{DCE}\) chung
Do đó: ΔCDE~ΔCAB
=>\(k=\dfrac{CD}{CA}=\dfrac{156}{17}:12=\dfrac{13}{17}\)
c: ΔCDE~ΔCAB
=>\(\dfrac{CD}{CA}=\dfrac{CE}{CB}\)
=>\(\dfrac{CD}{CE}=\dfrac{CA}{CB}\)
Xét ΔCDA và ΔCEB có
\(\dfrac{CD}{CE}=\dfrac{CA}{CB}\)
\(\widehat{C}\) chung
Do đó: ΔCDA~ΔCEB
=>\(\dfrac{DA}{EB}=\dfrac{CA}{CB}\)
=>\(DA\cdot CB=BE\cdot AC\)
d: ΔCDE~ΔCAB
=>\(\dfrac{DE}{AB}=\dfrac{CD}{CA}\)
=>\(\dfrac{DE}{5}=\dfrac{156}{17}:12=\dfrac{13}{17}\)
=>\(DE=\dfrac{13}{17}\cdot5=\dfrac{65}{17}\left(cm\right)\)
Xét tứ giác ABDE có \(\widehat{EAB}+\widehat{EDB}=90^0+90^0=180^0\)
nên ABDE là tứ giác nội tiếp
=>\(\widehat{DEB}=\widehat{DAB}=45^0\)
Xét ΔDEB vuông tại D có \(\widehat{DEB}=45^0\)
nên ΔDEB vuông cân tại D
ΔBDE vuông cân tại D
=>\(S_{BDE}=\dfrac{1}{2}\cdot DB\cdot DE=\dfrac{1}{2}\cdot DB^2=\dfrac{1}{2}\cdot\left(\dfrac{65}{17}\right)^2=\dfrac{1}{2}\cdot\dfrac{4225}{289}=\dfrac{4225}{578}\left(cm^2\right)\)
Hiệu của hai số bằng 2/3 số bé
=>Số lớn=5/3 số bé
Tổng số phần bằng nhau là 5+3=8(phần)
SỐ lớn là 1888:8x5=1180
Số bé là 1880-1180=708
\(A=1+2+2^2+2^3+...+2^{33}\\ \Rightarrow2A=2+2^2+2^3+2^4+...+2^{34}\\ \Rightarrow2A-A=\left(2+2^2+2^3+2^4+...+2^{34}\right)-\left(1+2+2^2+2^3+...+2^{33}\right)\\ \Rightarrow A=2^{34}-1\)
Ta có: \(2^{34}=2^{17.2}=\left(2^{17}\right)^2\) là số chính phương
Do đó: \(A=2^{34}-1\) không phải là số chính phương
Vậy...
\(\left(x^2-9\right)-9\left(x-3\right)^2=0\\ \Leftrightarrow\left(x-3\right)\left(x+3\right)-9\left(x-3\right)^2=0\\ \Leftrightarrow\left(x-3\right)\left[\left(x+3\right)-9\left(x-3\right)\right]=0\\ \Leftrightarrow\left(x-3\right)\left(x+3-9x+27\right)=0\\ \Leftrightarrow\left(x-3\right)\left(30-8x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-3=0\\30-8x=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{15}{4}\end{matrix}\right.\)
`#3107.101107`
\(\left(x^2-9\right)-9\left(x-3\right)^2=0\\ \Rightarrow\left(x-3\right)\left(x+3\right)-9\left(x-3\right)^2=0\\ \Rightarrow\left(x-3\right)\left[x+3-9\left(x-3\right)\right]=0\\ \Rightarrow\left[{}\begin{matrix}x-3=0\\x+3-9x+27=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=3\\-8x+30=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=3\\-8x=-30\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=3\\8x=30\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{15}{4}\end{matrix}\right.\)
Vậy, \(x\in\left\{3;\dfrac{15}{4}\right\}.\)
___
Các HĐT sử dụng trong bài:
\(\left(A-B\right)^2=A^2-2AB+B^2\\ A^2-B^2=\left(A-B\right)\left(A+B\right).\)