Cho biểu thức P = x2 + xy + y2 – 3(x + y) + 3. Chứng minh rằng giá trị nhỏ nhất của P bằng 0.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: ab/c + bc/a + ca/b - (a + b + c)
= ab/c - a + bc/a - b + ca/b - c
= (ab-ac)/c + (bc-ba)/a + (ca -cb)/b
= [a^2b(b-c) + b^2c(c-a) + c^2a(a-b)]/abc >= 0 (Vì a,b,c > 0).
Vậy: ab/c + bc/a + ca/b ≥ a + b + c.
Gửi lại vì cái lúc nãy bị liền nhau quá khó hiểu
#Học tốt!
tham khảo :
Vậy: ab/c + bc/a + ca/b ≥ a + b + c.Ta có: ab/c + bc/a + ca/b - (a + b + c)
= ab/c - a + bc/a - b + ca/b - c
= (ab-ac)/c + (bc-ba)/a + (ca -cb)/b
= [a^2b(b-c) + b^2c(c-a) + c^2a(a-b)]/abc >= 0 (Vì a,b,c > 0).
iả sử √7 là số hữu tỉ
=> √7 = a/b (a,b ∈ Z ; b ≠ 0)
không mất tính tổng quát giả sử (a;b) = 1
=> 7 = a²/b²
<=> a² = b7²
=> a² ⋮ 7
7 nguyên tố
=> a ⋮ 7
=> a² ⋮ 49
=> 7b² ⋮ 49
=> b² ⋮ 7
=> b ⋮ 7
=> (a;b) ≠ 1 (trái với giả sử)
=> giả sử sai
=> √7 là số vô tỉ
Giả sử √7 là số hữu tỉ
=> √7 = a/b (a,b ∈ Z ; b ≠ 0)
không mất tính tổng quát giả sử (a;b) = 1
=> 7 = a²/b²
<=> a² = b7²
=> a² ⋮ 7
7 nguyên tố
=> a ⋮ 7
=> a² ⋮ 49
=> 7b² ⋮ 49
=> b² ⋮ 7
=> b ⋮ 7
=> (a;b) ≠ 1 (trái với giả sử)
=> giả sử sai
=> √7 là số vô tỉ
Cre: Lazi
#Học tốt!
TL:
Ta có: MD = ME (tính chất hai tiếp tuyến cắt nhau)
PD = PI (tính chất hai tiếp tuyến cắt nhau)
QI = QE (tính chất hai tiếp tuyến cắt nhau)
Chu vi tam giác APQ bằng:
MP + PQ + QM
= MP + PI + IQ + QM
= MP + PD + QM + QE
= MD + ME
= 2.MD
= 2.4 = 8 (cm)
~HT~
Câu 3 -> 6 dễ rồi, bạn tự làm
\(sin20^0-cot40^0.cot50^0-cos70^0\)
\(=cos70^0-tan50^0.cot50^0-cos70^0=0-1=-1\)
-> chọn B
tu lam di ban
Khó quá mình mới học lớp 7 thoyyy