K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
19 tháng 3 2024

\(A=\dfrac{\left|x-2022\right|+2024-1}{\left|x-2022\right|+2024}=1-\dfrac{1}{\left|x-2022\right|+2024}\)

Do \(\left|x-2022\right|\ge0;\forall x\Rightarrow\left|x-2022\right|+2024\ge2024\)

\(\Rightarrow-\dfrac{1}{\left|x-2022\right|+2024}\ge-\dfrac{1}{2024}\)

\(\Rightarrow A\ge1-\dfrac{1}{2024}=\dfrac{2023}{2024}\)

\(A_{min}=\dfrac{2023}{2024}\) khi \(x-2022=0\Rightarrow x=2022\)

a: Xét ΔAMB và ΔAMC có

AM chung

\(\widehat{BAM}=\widehat{CAM}\)

AB=AC

Do đó: ΔAMB=ΔAMC

b: Ta có: ΔAMB=ΔAMC

=>MB=MC

=>M là trung điểm của BC

c: ta có: ΔAMB=ΔAMC

=>\(\widehat{AMB}=\widehat{AMC}\)

mà \(\widehat{AMB}+\widehat{AMC}=180^0\)(hai góc kề bù)

nên \(\widehat{AMB}=\widehat{AMC}=\dfrac{180^0}{2}=90^0\)

=>AM\(\perp\)BC

mà IH\(\perp\)BC

nên AM//IH

=>\(\widehat{BIH}=\widehat{BAM}\)

mà \(\widehat{BAC}=2\cdot\widehat{BAM}\)(AM là phân giác của góc BAC)

nên \(\widehat{BAC}=2\cdot\widehat{BIH}\)

a) Do AB = AC và AM là tia phân giác của góc A nên tam giác AMB cân tại A và tam giác AMC cân tại A.
- Ta có góc BAM = góc CAM (do AM là tia phân giác).
=> Vậy tam giác AMB = tam giác AMC (các cạnh tương ứng bằng nhau).
b) Do tam giác AMB = tam giác AMC nên BM = MC.
=> Vậy M là trung điểm của BC.
c) Do ∠BAI = ∠CAK (do AK là tia phân giác của ∠BAC) và ∠BAI = ∠BHI (do IH ⊥ BC và AI // BC) nên ∠CAK = ∠BHI.
- Lại có ∠ACK = ∠BHK (do CK = KH và AC // BH).
=> Vậy tam giác ACK = tam giác BHK (các góc tương ứng bằng nhau) nên ∠BAC = 2∠BIH (do ∠BAC = ∠ACK + ∠CAK = ∠BHK + ∠BHI = 2∠BIH).
~~~~~~
+) ∠ là góc nhé ^^

a: Xét ΔABM và ΔACM có

AB=AC

BM=CM

AM chung

Do đó: ΔABM=ΔACM

b: Ta có: ΔABM=ΔACM

=>\(\widehat{BAM}=\widehat{CAM}\)

Xét ΔADB và ΔADC có

AD chung

\(\widehat{BAD}=\widehat{CAD}\)

AB=AC

Do đó: ΔADB=ΔADC

=>DB=DC

c: 

Ta có: DB và DE là hai tia đối nhau

=>D nằm giữa B và E

mà DB=DE

nên D là trung điểm của BE

Xét ΔCEB có

CD là đường trung tuyến

\(CG=\dfrac{2}{3}CD\)

Do đó: G là trọng tâm của ΔCEB

Xét ΔCEB có

G là trọng tâm

M là trung điểm của BC

Do đó; E,G,M thẳng hàng

Gọi số công nhân trong đội lúc đầu là $x$. 
Theo đề bài, ta có: 
$x \cdot 30 = (x + 10) \cdot 20$
Giải trên, ta được: $x = 20$
Vậy, số công nhân trong đội lúc đầu là 20 người.

Gọi giá tiền mua 1 kg táo, 1kg bưởi và 1 kg dưa hấu lần lượt là a(đồng),b(đồng),c(đồng)

Vì số tiền để cô Mai mua táo  bằng số tiền mua bưởi và dưa hấu nên 3a=6b=10c

=>\(\dfrac{3a}{30}=\dfrac{6b}{30}=\dfrac{10c}{30}\)

=>\(\dfrac{a}{10}=\dfrac{b}{5}=\dfrac{c}{3}\)

Giá 1kg bưởi hơn 1kg dưa hấu 18000 đồng nên b-c=18000

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{a}{10}=\dfrac{b}{5}=\dfrac{c}{3}=\dfrac{b-c}{5-3}=\dfrac{18000}{2}=9000\)

=>\(a=9000\cdot10=90000;b=9000\cdot5=45000;c=9000\cdot3=27000\)

Vậy: giá tiền mua 1 kg táo, 1kg bưởi và 1 kg dưa hấu lần lượt là 90000 đồng; 45000 đồng; 27000 đồng

1

Các nhận xét đúng là nhận xét 1;2

a: Sửa đề: ΔBAD=ΔBED

Xét ΔBAD và ΔBED có

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

Do đó: ΔBAD=ΔBED

b: Xét ΔMDH và ΔMCB có

\(\widehat{MDH}=\widehat{MCB}\)(hai góc so le trong, DH//BC)

MD=MC

\(\widehat{DMH}=\widehat{CMB}\)(hai góc đối đỉnh)

Do đó: ΔMDH=ΔMCB

=>DH=CB

16 tháng 3 2024

a)Ta có tam giác ABC cân

=>:AB=AC;góc B=góc C.

Xét tam giác AMB và tam giác AMC có:

AB=AC(cmt)

góc BAM=góc CAM (AM là phân giác của góc A).

AM chung.

=>tam giác AMB = tam giác AMC(c-g-c)

b) Vì tam giác AMB = tam giác AMC

=>góc AMB=góc AMC (2 góc tương ứng)

Mà 2 góc ở vị trí kề bù => góc AMB=góc AMC=180:2=90độ

=>AM vuông góc BC

c)