Gpt: \(\sqrt{x-2}-\sqrt{x+2}=2\sqrt{x^2-4}-2x+2\)
Ai làm đc tặng 3 tick
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{10a^2+10b^2+c^2}{ab+bc+ca}=\frac{8a^2+\frac{c^2}{2}+8b^2+\frac{c^2}{2}+2a^2+2b^2}{ab+bc+ca}\)
\(\ge\frac{2\sqrt{8a^2.\frac{c^2}{2}}+2\sqrt{8b^2.\frac{c^2}{2}}+4\sqrt{a^2b^2}}{ab+bc+ca}=\frac{4\left(ab+bc+ca\right)}{ab+bc+ca}=4\)
Dấu \(=\)khi \(a=b=\frac{c}{4}\).
Bạn tham khảo nhé: áp dụng bđt côsi cho 2 số dương
2a2+2b2>=4ab;8a2+c2/2>=4ac;8b2+c2/2>=4ac nên A>=4
dấu bằng xảy ra khi 4a=4b=c
\(D=\sqrt{9-\sqrt{87}}\sqrt{9+\sqrt{87}}=\sqrt{81-87}\)
đề sai ko bạn vì \(\sqrt{a}\)xảy ra khi a >= 0 mà -6 < 0 bạn nhé
Ta có
\(P=\frac{\sqrt{x}-1}{\sqrt{x}}>0\Rightarrow\sqrt{x}-1>0\Leftrightarrow x>1\)vì \(\sqrt{x}\ge0\)
Ta có:
\(\sqrt{\frac{1}{1^2}+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}}=\sqrt{\frac{\left(1+n+n^2\right)^2}{n^2\left(n+1\right)^2}}\)
\(=\frac{1+n+n^2}{n\left(n+1\right)}=1+\frac{1}{n}-\frac{1}{n+1}\)
Áp dụng bài toán được
\(A=\sqrt{\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}}+\sqrt{\frac{1}{1^2}+\frac{1}{3^2}+\frac{1}{4^2}}+...+\sqrt{\frac{1}{1^2}+\frac{1}{2021^2}+\frac{1}{2022^2}}\)
\(=1+\frac{1}{2}-\frac{1}{3}+1+\frac{1}{3}+\frac{1}{4}+...+1+\frac{1}{2021}-\frac{1}{2022}\)
\(=2020+\frac{1}{2}-\frac{1}{2022}=\)
ĐKXĐ : x \(\ge2\)
Ta có \(\sqrt{x-2}-\sqrt{x+2}=2\sqrt{x^2-4}-2x+2\)
\(\Leftrightarrow\sqrt{x-2}-\sqrt{x+2}=2\sqrt{\left(x-2\right)\left(x+2\right)}-\left(x-2\right)-\left(x+2\right)+2\)
<=> \(\sqrt{x-2}-\sqrt{x+2}=-\left(\sqrt{x-2}-\sqrt{x+2}\right)^2+2\)
Đặt \(\sqrt{x-2}-\sqrt{x+2}=y\)
=> y = -y2 + 2
<=> y2 - y - 2 = 0
<=> (y + 1)(y - 2) = 0
<=> \(\orbr{\begin{cases}y=-1\\y=2\end{cases}}\)
Khi y = -1
<=> \(\sqrt{x-2}-\sqrt{x+2}=-1\)
=> \(\left(\sqrt{x-2}-\sqrt{x+2}\right)^2=1\)
<=> \(\left(x-2\right)+\left(x+2\right)-2\sqrt{\left(x-2\right)\left(x+2\right)}=1\)
<=> \(2x-1=2\sqrt{\left(x-2\right)\left(x+2\right)}\)
=> 4x2 - 4x + 1 = 2(x - 2)(x + 2)
<=> 4x2 - 4x + 1 = 2x2 - 8
<=> 2x2 - 4x + 9 = 0 (vô lý) => TH1 loại
Khi y = 2 =>\(\sqrt{x-2}-\sqrt{x+2}=2\)
=> \(\left(\sqrt{x-2}-\sqrt{x+2}\right)^2=4\)
<=> \(2x-2\sqrt{\left(x-2\right)\left(x+2\right)}=4\)
<=> \(2x-4=2\sqrt{\left(x-2\right)\left(x+2\right)}\)
=> (2x - 4)2 = 4(x - 2)(x + 2)
<=> 4(x - 2)2 = 4(x - 2)(x + 2)
<=> -16(x - 2) = 0
<=> x = 2 (tm)
Vậy x = 2