K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2023

a/

Xét 2 tg vuông ACE và tg vuông DCE có

CE chung

\(\widehat{ACE}=\widehat{DCE}\) (gt)

=> tg ACE = tg DCE (Hai tg vuông có cạnh huyền và góc nhọn tương ứng bằng nhau)

\(\Rightarrow\widehat{AEC}=\widehat{DEC}\) => CE là phân giác \(\widehat{AED}\)

b/

Gọi M là giao của CE và AD

Ta có tg ACE = tg DCE (cmt) => AC=DC

Xét tg ACM và tg DCM có

AC=DC; CM chung

\(\widehat{ACM}=\widehat{DCM}\)

=> tg ACM = tg DCM (c.g.c) => MA=MD (1)

\(\Rightarrow\widehat{AMC}=\widehat{DMC}=\dfrac{\widehat{AMD}}{2}=\dfrac{180^o}{2}=90^o\)

\(\Rightarrow CE\perp AD\) (2)

Từ (1) và (2) => CE là đường trung trực của AD

 

20 tháng 6 2023

a, A = \(\dfrac{2022.2023-1}{2022.2023}\) = \(\dfrac{2022.2023}{2022.2023}\) - \(\dfrac{1}{2022.2023}\) = 1 - \(\dfrac{1}{2022.2023}\)

B = \(\dfrac{2021.2022-1}{2021.2022}\) =  \(\dfrac{2021.2022}{2021.2022}\)  - \(\dfrac{1}{2021.2022}\) = 1 - \(\dfrac{1}{2021.2022}\) 

Vì \(\dfrac{1}{2022.2023}\) < \(\dfrac{1}{2021.2022}\)

Nên A > B

b, C = \(\dfrac{2022.2023}{2022.2023+1}\)  

    C = \(\dfrac{2022.2023+1-1}{2022.2023+1}\) = \(\dfrac{2022.2023+1}{2022.2023+1}\) - \(\dfrac{1}{2022.2023+1}\) 

     C = 1  - \(\dfrac{1}{2022.2023+1}\)

     D = \(\dfrac{2023.2024}{2023.2024+1}\) = \(\dfrac{2023.2024+1-1}{2023.2024+1}\) 

     D = 1 - \(\dfrac{1}{2023.2024+1}\)

Vì \(\dfrac{1}{2022.2023+1}\) > \(\dfrac{1}{2023.2024+1}\)

Nên C < D 

 

20 tháng 6 2023

Gọi số nguyên thứ nhất thỏa mãn đề bài là: \(x\) (\(x\in\) Z)

Thì ba số nguyên tiếp thỏa mãn đề bài lần lượt là: \(x\)\(x\) + 1; \(x\) + 2 

Tổng của ba số nguyên liên tiếp là: \(x\) + \(x\) + 1 + \(x\) + 2 = 3\(x\) + 3

Theo bài ra ta có:  3\(x\) + 3 = -9 

                              3\(x\) = - 9 - 3

                              3\(x\) = -12

                               \(x\) = -12:3

                               \(x\) = -4

Vậy ba số nguyên liên tiếp thỏa mãn đề bài lần lượt là: -4; -3; -2

Tích của ba số nguyên liên tiếp là: -4.(-3).(-2) = -24

Kết luận: đáp án đúng mà người B cần đưa ra là: -24

                         

 

                                 

 

AH
Akai Haruma
Giáo viên
20 tháng 6 2023

Lời giải:

$\frac{2022a+b+c}{a}=\frac{a+2022b+c}{b}=\frac{a+b+2022c}{c}$

$=2021+\frac{a+b+c}{a}=2021+\frac{a+b+c}{b}=2021+\frac{a+b+c}{c}$

$\Rightarrow \frac{a+b+c}{a}=\frac{a+b+c}{b}=\frac{a+b+c}{c}$

$\Rightarrow a+b+c=0$ hoặc $\frac{1}{a}=\frac{1}{b}=\frac{1}{c}$

$\Rightarrow a+b+c=0$ hoặc $a=b=c$

Nếu $a+b+c=0$ thì:

$P=\frac{a+b}{c}+\frac{b+c}{a}+\frac{a+c}{b}=\frac{(-c)}{c}+\frac{(-b)}{b}+\frac{(-a)}{a}=-1+(-1)+(-1)=-3$
Nếu $a=b=c$ thì:

$P=\frac{c+c}{c}+\frac{a+a}{a}+\frac{b+b}{b}=2+2+2=6$

AH
Akai Haruma
Giáo viên
20 tháng 6 2023

$A=(x-4)^2+1$

Ta thấy $(x-4)^2\geq 0$ với mọi $x$

$\Rightarroe A=(x-4)^2+1\geq 0+1=1$

Vậy GTNN của $A$ là $1$. Giá trị này đạt tại $x-4=0\Leftrightarrow x=4$

-------------------

$B=|3x-2|-5$

Vì $|3x-2|\geq 0$ với mọi $x$ 

$\Rightarrow B=|3x-2|-5\geq 0-5=-5$

Vậy $B_{\min}=-5$. Giá trị này đạt tại $3x-2=0\Leftrightarrow x=\frac{2}{3}$

AH
Akai Haruma
Giáo viên
20 tháng 6 2023

$C=5-(2x-1)^4$

Vì $(2x-1)^4\geq 0$ với mọi $x$ 

$\Rightarrow C=5-(2x-1)^4\leq 5-0=5$

Vậy $C_{\max}=5$. Giá trị này đạt tại $2x-1=0\Leftrightarrow x=\frac{1}{2}$

----------------

$D=-3(x-3)^2-(y-1)^2-2021$
Vì $(x-3)^2\geq 0, (y-1)^2\geq 0$ với mọi $x,y$

$\Rightarrow D=-3(x-3)^2-(y-1)^2-2021\leq -3.0-0-2021=-2021$

Vậy $D_{\max}=-2021$. Giá trị này đạt tại $x-3=y-1=0$

$\Leftrightarrow x=3; y=1$

20 tháng 6 2023

a : 3 dư 1 => \(a-1⋮3\)

b : 3 dư 2 => \(b-2⋮3\)

=> \(\left(a-1\right)\left(b-2\right)=ab-\left(2a+b\right)+2⋮3\)

Ta có: \(a-1⋮3\Rightarrow2a-2⋮3\)

=> \(2a-2+b-2=2a+b-4=2a+b-1-3⋮3\)

=> \(2a+b-1⋮3\)  

Vì:\(ab-\left(2a+b\right)+2=ab-\left(2a+b-1\right)+1⋮3\)

Mà: \(2a+b-1⋮3\)

=> \(ab+1⋮3\)

=> ab : 3 dư 2

Vậy số dư của ab khi chia cho 3 dư 2

 

20 tháng 6 2023

Hôm nay olm.vn sẽ hướng dẫn em sử dụng đẳng thức đồng dư  để tìm số dư nhanh nhất em nhé

a:3 dư 1 ⇒ a \(\equiv\) 1 (mod 3)

b: 3 dư 2 ⇒ b \(\equiv\) 2 (mod 3)

Nhân vế với vế ta được: a.b \(\equiv\) 2 (mod 3) ⇒ ab chia 3 dư 2

 

 

19 tháng 6 2023

`-0,125 + (-7)/10 + 1,125`

`= ( -0,125 + 1,125) + (-7)/10`

`= 1 + (-7)/10`

`= 10/10 + (-7)/10`

`= 3/10`

`#``QAnhh`

19 tháng 6 2023

\(\dfrac{2}{3}=\dfrac{2\times24}{3\times24}=\dfrac{48}{72}\\ \dfrac{3}{4}=\dfrac{3\times18}{4\times18}=\dfrac{54}{72}\\ \)

5 số phải tìm là : \(\dfrac{49}{72},\dfrac{50}{72},\dfrac{51}{72},\dfrac{52}{72},\dfrac{53}{72}\)

19 tháng 6 2023

a) Ta có: \(A\left(x\right)=ax^2+bx+c\)

Thay \(A\left(-1\right)\)  ta được:

\(A\left(-1\right)=a\left(-1\right)^2+b\left(-1\right)+c=a+c-b\)

\(=b-8-b=-8\)

b) \(\left\{{}\begin{matrix}A\left(0\right)=4\\A\left(1\right)=9\\A\left(2\right)=14\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=4\\a+b+c=9\\4a+2b+c=14\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=4\\a+b=5\\4a+2b=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=4\\a+b=5\\2a+b=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=4\\a=0\\b=5\end{matrix}\right.\)

c) 

Ta có: \(\left\{{}\begin{matrix}A\left(2\right)=4a+2b+c\\A\left(-1\right)=a-b+c\end{matrix}\right.\)

\(\Leftrightarrow A\left(2\right)+A\left(-1\right)=5a+b+2c=0\)

\(\Leftrightarrow A\left(2\right)=-A\left(-1\right)\)

\(\Leftrightarrow A\left(2\right)\times A\left(-1\right)=-\left[A\left(2\right)\right]^2\le0\)

 

`@` `\text {Ans}`

`\downarrow`

`B(x)-A(x)+C(x)`

`=`\((x^2-5x^3-4x+7) - (-x^3 + 7x^2 +2x - 15) + 3x^3 - 7x^2 -4\)

`=`\(x^2-5x^3-4x+7+x^3-7x^2-2x+15+3x^3-7x^2-4\)

`=`\(\left(-5x^3+x^3+3x^3\right)+\left(x^2-7x^2-7x^2\right)+\left(-4x-2x\right)+\left(7+15-4\right)\)

`=`\(-x^3-13x^2-6x+18\)

`C(x)-B(x)-A(x)`

`=`\(3x^3 - 7x^2 -4 - (x^2-5x^3-4x+7) - (-x^3 + 7x^2 +2x - 15)\)

`=`\(3x^3-7x^2-4-x^2+5x^3+4x-7+x^3-7x^2-2x+15\)

`=`\(\left(3x^3+5x^3+x^3\right)+\left(-7x^2-x^2-7x^2\right)+\left(4x-2x\right)+\left(-4-7+15\right)\)

`=`\(9x^3-15x^2+2x+4\)

19 tháng 6 2023

a) \(B\left(x\right)-A\left(x\right)+C\left(x\right)\)

\(=\left(x^2-5x^3-4x+7\right)-\left(-x^3+7x^2+2x-15\right)+\left(3x^3-7x^2-4\right)\)

\(=x^2-5x^3-4x+7+x^3-7x^2-2x+15+3x^3-7x^2-4\)

\(=\left(-5x^3+x^3+3x^3\right)+\left(x^2-7x^2-7x^2\right)-\left(4x+2x\right)+\left(7-4+15\right)\)

\(=-x^3-13x^2-6x+18\)

b) \(C\left(x\right)-B\left(x\right)-A\left(x\right)\)

\(=\left(3x^3-7x^2-4\right)-\left(x^2-5x^3-4x+7\right)-\left(-x^3+7x^2+2x-15\right)\)

\(=3x^3-7x^2-4-x^2+5x^3+4x-7+x^3-7x^2-2x+15\)

\(=\left(3x^3+5x^3+x^3\right)-\left(7x^2+x^2+7x^2\right)+\left(4x-2x\right)-\left(4+7-15\right)\)

\(=9x^3-15x^2+2x+4\)