Tính các giá trị biểu thức sau : \(\sqrt{\frac{9}{4}-\sqrt{2}}\) , \(\sqrt{\frac{129}{16}+\sqrt{2}}\), \(\sqrt{\frac{289+4\sqrt{72}}{16}}\), \(\sqrt{2}\sqrt{7-3\sqrt{5}}\),\(\sqrt{\frac{59}{25}+\frac{6}{5}\sqrt{2}}\), \(\sqrt{2-\sqrt{3}}.\left(\sqrt{6}+\sqrt{2}\right)\), \(\left(\sqrt{21}+7\right).\sqrt{10-2\sqrt{21}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vẽ tương đối (d1), (d2)
O y x 6 -4 d1 -1 -3 d2
b) Phương trình hoành độ giao điểm của (d1) và (d2):
\(\frac{3}{2}\)\(x+6\)\(=\) \(-3x-3\)
\(\Leftrightarrow\)\(\frac{9}{2}\)\(x=\)\(-9\)
\(\Leftrightarrow\)\(x=\)\(-2\)
\(\Rightarrow\)\(y=3\)
Vậy giao điểm của (d1) và (d2) là \(\left(-2;3\right)\)
c) Gọi phương trình đường thẳng cần tìm là (d): y = ax + b
(d) // (d1) => (d):\(\frac{3}{2}\) \(x+b\)
A \(\in\)(d2) => A \((\)\(\frac{-4}{3}\)\(;1\)\()\)
Thay tọa độ A vào đường thẳng (d) ta có :
1 = \(\frac{3}{2}\) .\(\frac{-4}{3}\)+ b
\(\Leftrightarrow\)b = 3
Vậy (d): y =\(\frac{3}{2}\) \(x+3\)
:3
Cho đường thẳng y = (k + 1)x + k. (1)
a) (1) đi qua gốc tọa độ \(\Leftrightarrow0=\left(k+1\right).0+k\Leftrightarrow k=0\)
b) (1) cắt trục tung tại điểm có tung độ bằng \(1-\sqrt{2}\).\(\Rightarrow1-\sqrt{2}=\left(k+1\right).0+k\Leftrightarrow k=1-\sqrt{2}\)
c) để (1) song song với đường thẳng \(y=\left(\sqrt{3}+1\right)x+3\). thì \(k+1=\sqrt{3}+1\Leftrightarrow k=\sqrt{3}\)
\(\frac{\sqrt{14^7}}{\sqrt{2^5}.\sqrt{7^7}}=\frac{\sqrt{2^7.7^7}}{\sqrt{2^5.7^7}}=\sqrt{\frac{2^7.7^7}{2^5.7^7}}=\sqrt{2^2}=2\)